916 resultados para surface morphology evolution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This commentary discusses and summarizes the key highlights of our recently reported work entitled ``Neuronal Differentiation of Embryonic Stem Cell Derived Neuronal Progenitors Can Be Regulated by Stretchable Conducting Polymers.'' The prospect of controlling the mechanical-rigidity and the surface conductance properties offers a unique combination for tailoring the growth and differentiation of neuronal cells. We emphasize the utility of transparent elastomeric substrates with coatings of electrically conducting polymer to realize the desired substrate-characteristics for cellular development processes. Our study showed that neuronal differentiation from ES cells is highly influenced by the specific substrates on which they are growing. Thus, our results provide a better strategy for regulated neuronal differentiation by using such functional conducting surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A controllable synthesis of phase pure wurtzite (WZ) ZnS nanostructures has been reported in this work at a low temperature of similar to 220 degrees C using ethylenediamine as the soft template and by varying the molar concentration of zinc to sulphur precursors as well as by using different precursors. A significant reduction in the formation temperature required for the synthesis of phase pure WZ ZnS has been observed. A strong correlation has been observed between the morphology of the synthesized ZnS nanostructures and the precursors used during synthesis. It has been found from Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) image analyses that the morphology of the ZnS nanocrystals changes from a block-like to a belt-like structure having an average length of similar to 450 nm when the molar ratio of zinc to sulphur source is increased from 1 : 1 to 1 : 3. An oriented attachment (OA) growth mechanism has been used to explain the observed shape evolution of the synthesized nanostructures. The synthesized nanostructures have been characterized by the X-ray diffraction technique as well as by UV-Vis absorption and photoluminescence (PL) emission spectroscopy. The as-synthesized nanobelts exhibit defect related visible PL emission. On isochronal annealing of the nanobelts in air in the temperature range of 100-600 degrees C, it has been found that white light emission with a Commission Internationale de I'Eclairage 1931 (CIE) chromaticity coordinate of (0.30, 0.34), close to that of white light (0.33, 0.33), can be obtained from the ZnO nanostructures obtained at an annealing temperature of 600 degrees C. UV light driven degradation of methylene blue (MB) dye aqueous solution has also been demonstrated using as-synthesized nanobelts and similar to 98% dye degradation has been observed within only 40 min of light irradiation. The synthesized nanobelts with visible light emission and having dye degradation activity can be used effectively in future optoelectronic devices and in water purification for cleaning of dyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface brightness distribution in the majority of stellar galactic discs falls off exponentially. Often what lies beyond such a stellar disc is the neutral hydrogen gas whose distribution also follows a nearly exponential profile at least for a number of nearby disc galaxies. Both the stars and gas are commonly known to host lopsided asymmetry especially in the outer parts of a galaxy. The role of such asymmetry in the dynamical evolution of a galaxy has not been explored so far. Following Lindblad's original idea of kinematic density waves, we show that the outer part of an exponential disc is ideally suitable for hosting lopsided asymmetry. Further, we compute the transport of angular momentum in the combined stars and gas disc embedded in a dark matter halo. We show that in a pure star and gas disc, there is a transition point where the free precession frequency of a lopsided mode, Omega - kappa, changes from retrograde to prograde and this in turn reverses the direction of angular momentum flow in the disc leading to an unphysical behaviour. We show that this problem is overcome in the presence of a dark matter halo, which sets the angular momentum flow outwards as required for disc evolution, provided the lopsidedness is leading in nature. This, plus the well-known angular momentum transport in the inner parts due to spiral arms, can facilitate an inflow of gas from outside perhaps through the cosmic filaments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural relaxations in PVDF rich blends with PMMA can be quite interesting in understanding the origin of the different molecular relaxations associated with the crystalline and amorphous phases, crystal-amorphous interphase and the segmental motions. In light of our recent findings, we understood that the origin of these molecular relaxations were strongly contingent on the concentration of PMMA in the blend, crystalline morphology and the surface functional moieties on multiwall carbon nanotubes (CNTs). In addition, for the blends with concentration of PMMA >= 25 wt%, the structural relaxations often merge and are dielectrically indistinguishable. In this study, we attempted to determine the critical width in composition where the structural relaxations can be distinctly realized both in the control as well as blends with amine functionalized CNTs (NH2-CNTs). Intriguingly, we observed that in a narrow zone in composition (with PMMA concentration >= 10 wt% and <= 25 wt%), the molecular relaxations can be dielectrically distinguished and they often merge for all other compositions. Furthermore, we attempted to understand how this critical width in composition is related to the crystalline morphology using small angle X-ray scattering and polarizing optical microscopy and the crystal structure using FTIR and Raman spectroscopy. We now understand that although the formation of beta crystals in the blends has no direct correlation with the observed molecular relaxations, the amorphous miscibility and the interphase regions seem to be dictating the origin of different molecular relaxations in the blends. The latter was observed to be strongly contingent on the concentration of PMMA in the blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When dropped, electronic packages often undergo failure by propagation of an interfacial crack in solder joints under a combination of tensile and shear loading. Hence, it is crucial to understand and predict the fracture behavior of solder joints under mixed-mode high-rate loading conditions. In this work, the effects of the loading conditions (strain rate and loading angle) and microstructure interfacial intermetallic compound (IMC) morphology and solder yield strength] on the mixed-mode fracture toughness of Sn-3.8 wt.%Ag-0.7 wt.%Cu solder joints sandwiched between two Cu substrates with electroless nickel immersion gold (ENIG) metallization have been studied, and compared with the fracture behavior of joints attached to bare Cu. Irrespective of the surface finish, the fracture toughness of the solder joints decreased monotonically with strain rate and mode-mixity, both resulting in increased fracture proportion through the interfacial IMC layer. Furthermore, the proportion of crack propagation through the interfacial IMC layer increased with increase in the thickness and the roughness of the interfacial IMC layer and the yield strength of the solder, resulting in a decrease in the fracture toughness of the joint. However, under most conditions, solder joints with ENIG finish showed higher resistance to fracture than joints attached directly to Cu substrates without ENIG metallization. Based on the experimental observations, a fracture mechanism map is constructed correlating the yield strength of the solder, the morphology and thickness of the interfacial IMC, and the fracture mechanisms as well as the fracture toughness values for different solder joints under mode I loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of strain path change during rolling on the evolution of deformation texture has been studied for nanocrystalline (nc) nickel. An orthogonal change in strain path, as imparted by alternating rolling and transverse directions, leads to a texture with a strong Bs {110}aOE (c) 112 > component. The microstructural features, after large deformation, show distinct grain morphology for the cross-rolled material. Crystal plasticity simulations, based on viscoplastic self-consistent model, indicate that slip involving partial dislocation plays a vital role in accommodating plastic deformation during the initial stages of rolling. The brass-type texture evolved after cross rolling to large strains is attributed to change in strain path.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, effect of pouring temperature (650 degrees C, 655 degrees C, and 660 degrees C) on semi-solid microstructure evolution of in-situ magnesium silicide (Mg2Si) reinforced aluminum (Al) alloy composite has been studied. The shear force exerted by the cooling slope during gravity driven flow of the melt facilitates the formation of near spherical primary Mg2Si and primary Al grains. Shear driven melt flow along the cooling slope and grain fragmentation have been identified as the responsible mechanisms for refinement of primary Mg2Si and Al grains with improved sphericity. Results show that, while flowing down the cooling slope, morphology of primary Mg2Si and primary Al transformed gradually from coarse dendritic to mixture of near spherical particles, rosettes, and degenerated dendrites. In terms of minimum grain size and maximum sphericity, 650 degrees C has been identified as the ideal pouring temperature for the cooling slope semi-solid processing of present Al alloy composite. Formation of spheroidal grains with homogeneous distribution of reinforcing phase (Mg2Si) improves the isotropic property of the said composite, which is desirable in most of the engineering applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In spite of intense research on ZnO over the past decade, the detailed investigation about the crystallographic texture of as obtained ZnO thin films/coatings, and its deviation with growth surface is scarce. We report a systematic study about the orientation distribution of nanostructured ZnO thin films fabricated by microwave irradiation with the variation of substrates and surfactants. The nanostructured films comprising of ZnO nanorods are grown on semiconductor substrates such as Si(100), Ge(100)], conducting substrates (ITO-coated glass, Cr coated Si), and polymer coated Si (PMMA/Si) to examine the respective development of crystallographic texture. The ZnO deposited on semiconductor substrates yieldsmixed texture, whereas c-axis oriented ZnO nanostructured films are obtained by conducting substrate, and PMMA coated Si substrates. Among all the surfactants, nanostructured film produced by using the lower molecular weight of polymeric surfactants (polyvinylpyrrolidone) shows a stronger (0002) texture, and that can be tuned to (10 - 10) by increasing the molecular weight of the surfactant. The strongest basal pole is achieved for the ZnO deposited on PMMA coated Si as substrate, and cetyl-trimethyl ammonium bromide as cationic surfactant. The texture analysis is carried out by X-ray pole figure analysis using the Schultz reflection method. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titania aerogels were synthesized by sol-gel route followed by ambient pressure subcritical drying technique. The aerogels synthesized in the present work possess a maximum surface area of 252 m(2)/g. The pore size distribution is between 2 and 30 nm which confirms their mesoporosity. The oxygen plasma treatment on titania aerogel thin films improved the surface area up to 273 m(2)/g and produced additional hydrophilic groups on the surface. It is confirmed by BET surface area, XPS and thermal analysis in conjunction with dye adsorption studies. After plasma treatment the dye adsorption capacity was increased 2.5 times higher than that of untreated aerogel film. The increased surface area and the hydrophilic groups generated on the titania aerogel surface during plasma treatment are responsible for enhanced dye adsorption. The overall nanoporous morphology of titania aerogel is preserved after plasma treatment. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tensile experiments on cold-drawn Ni microwires with diameters from similar to 115 to 50 gm revealed high strengths, with significant strength variability for finer wires with diameters less than similar to 50 gm. The wires showed pronounced necking at fracture. The coarser wires with diameters > 50 mu m exhibited conventional ductile cup-cone fracture, with dimples in the central zone and peripheral shear lips, whereas finer wires failed by shear with knife or chisel-edge fractures. Shear bands were observed in all samples. Further, through- section microscopy of selected fractured samples revealed that the shear bands did not go across the enitre specimen for the coarser wires. The shear bands led to grain fragmention, with a reduction in grain aspect ratio as well as rotations away from the initial < 111 > orientations. The strength data were analysed based on a Weibull approach. The data could be rationalized in terms of failure from volume defects in coarser wires, with a high Weibull modulus, and from surface defects in finer wires, with a low Weibull modulus and greater variability. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-crystals of LiNbxTa1 (-) O-x(3) were evolved by subjecting melt-quenched 1.5Li(2)O-2B(2)O(3)-xNb(2)O(5)-(1 - x)Ta2O5 glasses (where x = 0, 0.25, 0.5, 0.75 and 1.00) to a controlled 3-h isothermal heat treatment between 530 and 560 degrees C. Detailed X-ray diffraction and Raman spectral studies confirmed the formation of nano-crystalline LiNbxTa1 (-) O-x(3) along with a minor phase of ferroelectric and non-linear optic Li2B4O7. The sizes of the nanocrystals evolved in the glass were in the range of 19-37 nm for x = 0-0.75 and 23-45 nm for x = 1.00. Electron microscopic studies confirmed a transformation of the morphology of the nano-crystallites from dendritic star-shaped spherulites for x = 0 to rod-shaped structures for x = 1.00 brought about by a coalescence of crystallites. Broad Maker-fringe patterns (recorded at 532 nm) were obtained by subjecting the heat-treated glass plates to 1064 nm fundamental radiation. However, an effective second order non-linear optic coefficient, d(eff), of 0.45 pm/V, which is nearly 1.2 times the d(36) of KDP single crystal, was obtained for a 560 degrees C/3 h heat-treated glass of the representative composition x = 0.50 comprising 37 nm sized crystallites. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-crystals of LiNbxTa1 (-) O-x(3) were evolved by subjecting melt-quenched 1.5Li(2)O-2B(2)O(3)-xNb(2)O(5)-(1 - x)Ta2O5 glasses (where x = 0, 0.25, 0.5, 0.75 and 1.00) to a controlled 3-h isothermal heat treatment between 530 and 560 degrees C. Detailed X-ray diffraction and Raman spectral studies confirmed the formation of nano-crystalline LiNbxTa1 (-) O-x(3) along with a minor phase of ferroelectric and non-linear optic Li2B4O7. The sizes of the nanocrystals evolved in the glass were in the range of 19-37 nm for x = 0-0.75 and 23-45 nm for x = 1.00. Electron microscopic studies confirmed a transformation of the morphology of the nano-crystallites from dendritic star-shaped spherulites for x = 0 to rod-shaped structures for x = 1.00 brought about by a coalescence of crystallites. Broad Maker-fringe patterns (recorded at 532 nm) were obtained by subjecting the heat-treated glass plates to 1064 nm fundamental radiation. However, an effective second order non-linear optic coefficient, d(eff), of 0.45 pm/V, which is nearly 1.2 times the d(36) of KDP single crystal, was obtained for a 560 degrees C/3 h heat-treated glass of the representative composition x = 0.50 comprising 37 nm sized crystallites. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tb0.3Dy0.7Fe1.95 alloy was directionally solidified by using a modified Bridgman technique at a wide range of growth rates of 5 to 100 cm/h. The directionally grown samples exhibited plane front solidification morphology up to a growth rate of 90 cm/h. Typical island banding feature was observed closer to the chilled end, which eventually gave rise to irregular peritectic coupled growth (PCG). The PCG gained prominence with an increase in the growth rate. The texture study revealed formation of strong aOE (c) 311 > texture in a lower growth rate regime, aOE (c) 110 > and ``rotated aOE (c) 110 > aEuroe in an intermediate growth regime, and aOE (c) 112 > in a higher growth rate regime. In-depth analysis of the atomic configuration of a solid-liquid interface revealed that the growth texture is influenced by the kinetics of atomic attachment to the solid-liquid interface, which is intimately related to a planar packing fraction and an atomic stacking sequence of the interfacial plane. The mechanism proposed in this article is novel and will be useful in addressing the orientation selection mechanism of topologically closed packed intermetallic systems. The samples grown at a higher growth rate exhibit larger magnetostriction (lambda) and d lambda/dH owing to the absence of pro-peritectic (Tb,Dy)Fe-3 and formation of aOE (c) 112 > texture, which lies closer to the easy magnetization direction (EMD).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-arc oxidation (MAO) coatings were prepared on AZ31B magnesium alloy using alkaline silicate electrolyte at different current densities (0.026, 0.046 and 0.067 A/cm(2)). Field Emission Scanning Electron Microscopy (FESEM) analysis of the coating revealed an irregular porous structure with cracked morphology. Compositional analysis carried out for MAO coating showed the presence of almost an equal amount of Mg and 0 (34 wt.%) apart from other elements such as F, Si and AI. The cross-sectional FESEM images clearly portrayed that the MAO coating was dense along with the presence of very few fine pores. The surface roughness (R-a) of the coatings increased with an increase in the current density. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were carried out for both the bare and MAO coated AZ31B Mg alloy in 3.5% NaCl solution. The corrosion potential (E-corr) and corrosion current density (i(corr)) values obtained for the bare substrate were -1.49 V and 46 mu A/cm(2), respectively. The coating prepared at 0.046 A/cm(2) exhibited the lowest i(corr) value of 7.79 x 10(-10) A/cm(2) and highest polarization resistance (41.6 M Omega cm(2)) attesting to the better corrosion resistance of the coating compared to other samples. EIS results also indicated almost similar corrosion behavior for the MAO coatings. Mott-Schottky analysis showed n-type and p-type semiconductor behavior for the oxide layer present on the bare magnesium alloy and MAO coatings respectively. (C) 2016 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier-Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated. (c) 2005 Elsevier SAS. All rights reserved.