961 resultados para support structure
Resumo:
O objetivo do estudo foi investigar a estrutura fatorial da Escala Modos de Enfrentamento de Problemas - EMEP, na versão adaptada para a população brasileira por Gimenes e Queiroz (1997), para mensurar estratégias de enfrentamento em relação a estressores específicos. A amostra foi composta por 409 adultos de ambos os sexos, onde 252 consideraram como estressor um problema atual que estivesse ocasionando estresse, enquanto 157 foram pessoas portadoras de enfermidades crônicas, que responderam à escala com base no problema de saúde que estavam apresentando. Foram extraídos quatro fatores pelo método dos eixos principais, rotação ortogonal: estratégias de enfrentamento focalizadas no problema, estratégias de enfrentamento focalizadas na emoção, práticas religiosas/pensamento fantasioso e busca de suporte social. A análise dos achados nas duas sub-amostras, diferenciadas quanto aos estressores dominantes, sugere possibilidades positivas de aplicação em contextos de pesquisa e de intervenção profissional, em especial a atuação clínica voltada para manejo do estresse junto a diferentes clientelas. _______________________________________________________________________________ ABSTRACT
Resumo:
The conventional approach in the discipline of International Relations is to treat terrorist organizations as "non-state" actors of international relations. However, this approach is problematic due to the fact that most terrorist organizations are backed or exploited by some states. In this article, I take issue with the non-stateness of terrorist organizations and seek to answer the question of why so many states, at times, support terrorist organizations. I argue that in the face of rising threats to national security in an age of devastating wars, modern nation states tend to provide support to foreign terrorist organizations that work against their present and imminent enemies. I elaborate on my argument studying three cases of state support for terrorism: Iranian support for Hamas, Syrian support for the PKK, and American support for the MEK. The analyses suggest that, for many states, terror is nothing but war by other means.
Resumo:
The thermal and hydrolytic degradation of electrospun gelatin membranes cross-linked with glutaraldehyde in vapor phase has been studied. In vitro degradation of gelatin membranes was evaluated in phosphate buffer saline solution at 37 ºC. After 15 days under these conditions, a weight loss of 68 % was observed, attributed to solvation and depolymerization of the main polymeric chains. Thermal degradation kinetics of the gelatin raw material and as-spun electrospun membranes showed that the electrospinning processing conditions do not influence polymer degradation. However, for cross-linked samples a decrease in the activation energy was observed, associated with the effect of glutaraldehyde cross-linking reaction in the inter- and intra-molecular hydrogen bonds of the protein. It is also shown that the electrospinning process does not affect the formation of the helical structure of gelatin chains.
Resumo:
Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing to be dependent of concentration and solvent used. Treatment with air saturated with methanol was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570-720%), water vapour transmission rate (1083 g/m2/day) and mechanical properties (modulus of elasticity of ~126 MPa). Furthermore, the methanol-treated SELP fiber mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fiber mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications.
Resumo:
Indentation tests are used to determine the hardness of a material, e.g., Rockwell, Vickers, or Knoop. The indentation process is empirically observed in the laboratory during these tests; the mechanics of indentation is insufficiently understood. We have performed first molecular dynamics computer simulations of indentation resistance of polymers with a chain structure similar to that of high density polyethylene (HDPE). A coarse grain model of HDPE is used to simulate how the interconnected segments respond to an external force imposed by an indenter. Results include the time-dependent measurement of penetration depth, recovery depth, and recovery percentage, with respect to indenter force, indenter size, and indentation time parameters. The simulations provide results that are inaccessible experimentally, including continuous evolution of the pertinent tribological parameters during the entire indentation process.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
We have employed molecular dynamics simulations to study the behavior of virtual polymeric materials under an applied uniaxial tensile load. Through computer simulations, one can obtain experimentally inaccessible information about phenomena taking place at the molecular and microscopic levels. Not only can the global material response be monitored and characterized along time, but the response of macromolecular chains can be followed independently if desired. The computer-generated materials were created by emulating the step-wise polymerization, resulting in self-avoiding chains in 3D with controlled degree of orientation along a certain axis. These materials represent a simplified model of the lamellar structure of semi-crystalline polymers,being comprised of an amorphous region surrounded by two crystalline lamellar regions. For the simulations, a series of materials were created, varying i) the lamella thickness, ii) the amorphous region thickness, iii) the preferential chain orientation, and iv) the degree of packing of the amorphous region. Simulation results indicate that the lamella thickness has the strongest influence on the mechanical properties of the lamella-amorphous structure, which is in agreement with experimental data. The other morphological parameters also affect the mechanical response, but to a smaller degree. This research follows previous simulation work on the crack formation and propagation phenomena, deformation mechanisms at the nanoscale, and the influence of the loading conditions on the material response. Computer simulations can improve the fundamental understanding about the phenomena responsible for the behavior of polymeric materials, and will eventually lead to the design of knowledge-based materials with improved properties.
Resumo:
Tissue engineering applications rely on scaffolds that during its service life, either for in-vivo or in vitro applications, are under mechanical solicitations. The variation of the mechanical condition of the scaffold is strongly relevant for cell culture and has been scarcely addressed. Fatigue life cycle of poly-ε-caprolactone, PCL, scaffolds with and without fibrin as filler of the pore structure were characterized both dry and immersed in liquid water. It is observed that the there is a strong increase from 100 to 500 in the number of loading cycles before collapse in the samples tested in immersed conditions due to the more uniform stress distributions within the samples, the fibrin loading playing a minor role in the mechanical performance of the scaffolds
Resumo:
The variation of the physical properties of four differ- ent carbon nanofibers (CNFs), based-polymer nano- composites incorporated in the same polypropylene (PP) matrix by twin-screw extrusion process was investigated. Nanocomposites fabricated with CNFs with highly graphitic outer layer revealed electrical isolation-to-conducting behaviors as function of CNF’s content. Nanocomposites fabricated with CNFs with an outer layer consisting on a disordered pyro- litically stripped layer, in contrast, revealed better mechanical performance and enhanced thermal sta- bility. Further, CNF’s incorporation into the polymer increased the thermal stability and the degree of crystallinity of the polymer, independently on the filler content and type. In addition, dispersion of the CNFs’ clusters in PP was analyzed by transmitted light opti- cal microscopy, and grayscale analysis (GSA). The results showed a correlation between the filler concentration and the variance, a parameter which measures quantitatively the dispersion, for all composites. This method indicated a value of 1.4 vol% above which large clusters of CNFs cannot be dispersed effectively and as a consequence only slight changes in mechanical performance are observed. Finally, this study establishes that for tailoring the physical properties of CNF based-polymer nanocomposites, both adequate CNFs structure and content have to be chosen.
Resumo:
Current software development often relies on non-trivial coordination logic for combining autonomous services, eventually running on different platforms. As a rule, however, such a coordination layer is strongly woven within the application at source code level. Therefore, its precise identification becomes a major methodological (and technical) problem and a challenge to any program understanding or refactoring process. The approach introduced in this paper resorts to slicing techniques to extract coordination data from source code. Such data are captured in a specific dependency graph structure from which a coordination model can be recovered either in the form of an Orc specification or as a collection of code fragments corresponding to the identification of typical coordination patterns in the system. Tool support is also discussed
Resumo:
Development of suitable membranes is a fundamental requisite for tissue and biomedical engineering applications. This work presents fish gelatin random and aligned electrospun membranes cross-linked with glutaraldehyde (GA). It was observed that the fiber average diameter and the morphology is not influenced by the GA exposure time and presents fibers with an average diameter around 250 nm. Moreover, when the gelatin mats are immersed in a phosphate buffered saline solution (PBS), they can retain as much as 12 times its initial weight of solution almost instantaneously, but the material microstructure of the fiber mats changes from the characteristic fibrous to an almost spherical porous structure. Cross-linked gelatin electrospun fiber mats and films showed a water vapor permeability of 1.37 ± 0.02 and 0.13 ± 0.10 (g.mm)/(m2.h.kPa), respectively. Finally, the processing technique and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Preliminary cell culture results showed good cell adhesion and proliferation in the cross-linked random and aligned gelatin fiber mats.
Resumo:
This work is developed in the context of Ambient Assisted Living (AAL) and has, as main purpose, the development of a mechatronic system that allows caring of bedridden patients with ongoing medical care terminal (MCT), by a single person. This system allows higher autonomy in domiciliary care, safety, comfort and hygiene of bedridden patients. It contributes to a large increase in their quality of life as well as the ease of monitoring by providers of continuous care, which, in many cases, may be the family itself. The product includes an embedded processing interface for acquiring physiological data to support online monitoring. The development of this project was focused on improving the quality of life, autonomy, participation in social life and reducing healthcare costs in the area AAL. The developed societies currently face severe demographic changes: the world is aging at an unprecedented rate. In 2000, about 420 million people, or about 7 percent of the world population were over 65 years old. In 2050, that number will be near 1500 million people, about 16 percent of the world population. This demographic trend will be accompanied by the increase of people with physical limitations. This will impose new challenges for traditional health systems, not only for Portugal but also for all European countries. There is an urgent need to find solutions to improve the lives of people in their preferred environment by increasing their autonomy, self-confidence and mobility. Therefore, in the case of household scenarios, the provision of effective health services is of fundamental importance to the welfare and economic development of each country. This ongoing project aims to develop a mechatronic system to meet the diverse needs, namely: improving life, health care, safety, comfort, and remote monitoring of bedridden person.
Resumo:
The Ambient Assisted Living (AAL) area is in constant evolution, providing new technologies to users and enhancing the level of security and comfort that is ensured by house platforms. The Ambient Assisted Living for All (AAL4ALL) project aims to develop a new AAL concept, supported on a unified ecosystem and certification process that enables a heterogeneous environment. The concepts of Intelligent Environments, Ambient Intelligence, and the foundations of the Ambient Assisted Living are all presented in the framework of this project. In this work, we consider a specific platform developed in the scope of AAL4ALL, called UserAccess. The architecture of the platform and its role within the overall AAL4ALL concept, the implementation of the platform, and the available interfaces are presented. In addition, its feasibility is validated through a series of tests.
Resumo:
As IPSS’s visam dar uma estrutura organizada ao dever ético de solidariedade e justiça – valores incalculáveis – entre os indivíduos. Não são administradas pelo Estado, nem por corpos autárquicos. E têm por objectivo, como informa a Segurança Social também, o apoio a crianças e jovens, o apoio à família, a protecção dos cidadãos na velhice e invalidez e nas situações de diminuição de meios de subsistência ou de capacidade para o trabalho, promoção e proteção da saúde designadamente por meio da prestação de cuidados de medicina preventiva, curativa e de reabilitação, educação e formação profissional dos cidadãos, resolução dos problemas habitacionais das populações.; Abstract: The IPSS's aim to give an organized structure to the ethical duty of solidarity and justice - incalculable values - between individuals. Are not run by the state or by municipal bodies. And aim, as reported by the Social Security also, support for children and youth, family support, the protection of citizens in old age, disability and decrease in situations of subsistence or capacity for work, promotion and health protection including through the provision of care preventive medicine, curative and rehabilitation, education and vocational training of citizens, solving the housing problems of the people.
Resumo:
In a Europe increasingly aging, it is now recognized the importance and potential of the service industry for ageing well based on information and communication technologies (ICT), as exemplified by the electronic market of social services and health care, the GuiMarket, proposed by the authors. However, this new range of services requires that individuals have advanced digital skills to fully participate in society. Based on the results of a survey made on a sample of 315 individuals, this paper discusses the importance granted GuiMarket and the intended frequency of use, concluding there is a close relationship between ICT access and use that respondents anticipate making of GuiMarket and alike services.