987 resultados para strain injury
Resumo:
Temperature effect on the pathogenicity of selected Edwardsiella tarda V-1 strain to Japanese eel, Anguilla japonica was investigated. To evaluate the effects of both pathogen incubation temperature and fish cultivation temperature on pathogen pathogenicity a two-factor design was conducted. E. tarda was incubated at 15, 20, 25, 30 and 37±1°C, and the fish (mean weight: 100g) were reared at 15, 20, 25 and 28±1°C respectively. The fish reared at different temperatures were infected with the E. tarda incubated at different temperatures. The results of a 4-day LD50 test showed that temperature significantly affected the pathogenicity of E. tarda (p<0.01) and the interaction between the two factors was also significant (p<0.01). For fish reared at 20°C the pathogenicity of E. tarda was the highest at 30°C of pathogen incubation. When the fish rearing temperature was raised to 25 and 28°C, the pathogenicity of E. tarda incubated at all temperatures increased. Isolation testing demonstrated results similar to those of LD50. The selected isolate was virulent to eel, but pathogenicity varied with temperature.
Resumo:
The influence of particle shape on the stress-strain response of fine silica sand is investigated experimentally. Two sands from the same source and with the same particle size distribution were examined using Fourier descriptor analysis for particle shape. Their grains were, on average, found to have similar angularity but different elongation. During triaxial stress path testing, the stress-strain behavior of the sands for both loading and creep stages were found to be influenced by particle elongation. In particular, the behavior of the sand with less elongated grains was more like that of rounded glass beads during creep. The results highlight the role of particle shape in stress transmission in granular packings and suggest that shape should be taken more rigorously into consideration in characterizing geomaterials. © 2005 Taylor & Francis Group.
Resumo:
Gas hydrate is a crystalline solid found within marine and subpermafrost sediments. While the presence of hydrates can have a profound effect on sediment properties, the stress-strain behavior of hydrate-bearing sediments is poorly understood due to inherent limitations in laboratory testing. In this study, we use numerical simulations to improve our understanding of the mechanical behavior of hydrate-bearing sands. The hydrate mass is simulated as either small randomly distributed bonded grains or as "ripened hydrate" forming patchy saturation, whereby sediment clusters with 100% pore-filled hydrate saturation are distributed within a hydrate-free sediment. Simulation results reveal that reduced sand porosity and higher hydrate saturation cause an increase in stiffness, strength, and dilative tendency, and the critical state line shifts toward higher void ratio and higher shear strength. In particular, the critical state friction angle increases in sands with patchy saturation, while the apparent cohesion is affected the most when the hydrate mass is distributed in pores. Sediments with patchy hydrate distribution exhibit a slightly lower strength than sediments with randomly distributed hydrate. Finally, hydrate dissociation under drained conditions leads to volume contraction and/or stress relaxation, and pronounced shear strains can develop if the hydrate-bearing sand is subjected to deviatoric loading during dissociation.
Resumo:
Several elastoplastic soil models have been proposed over the years that are formulated in strain space rather than stress space due to certain analytical and computational advantages. One such model, BRICK (Simpson 1992), has been continuously utilized and developed for industrial applications within Arup Geotechnics for more than two decades. This paper aims to describe the advantages and difficulties associated with strain space modeling. In addition, it will show how recent advances in modeling the effects of stress history, stiffness anisotropy, strength anisotropy and time-dependence in conventional stress space models can be transferred to the BRICK model. © 2010 Taylor & Francis Group, London.