998 resultados para stochastic methods
Resumo:
Highway noise is one of the most pressing of the surface characteristics issues facing the concrete paving industry. This is particularly true in urban areas, where not only is there a higher population density near major thoroughfares, but also a greater volume of commuter traffic (Sandberg and Ejsmont 2002; van Keulen 2004). To help address this issue, the National Concrete Pavement Technology Center (CP Tech Center) at Iowa State University (ISU), Federal Highway Administration (FHWA), American Concrete Pavement Association (ACPA), and other organizations have partnered to conduct a multi-part, seven-year Concrete Pavement Surface Characteristics Project. This document contains the results of Part 1, Task 2, of the ISU-FHWA project, addressing the noise issue by evaluating conventional and innovative concrete pavement noise reduction methods. The first objective of this task was to determine what if any concrete surface textures currently constructed in the United States or Europe were considered quiet, had long-term friction characteristics, could be consistently built, and were cost effective. Any specifications of such concrete textures would be included in this report. The second objective was to determine whether any promising new concrete pavement surfaces to control tire-pavement noise and friction were in the development stage and, if so, what further research was necessary. The final objective was to identify measurement techniques used in the evaluation.
Resumo:
Integrative review (IR) has an international reputation in nursing research and evidence-based practice. This IR aimed at identifying and analyzing the concepts and methods recommended to undertaking IR in nursing. Nine information resources,including electronic databases and grey literature were searched. Seventeen studies were included. The results indicate that: primary studies were mostly from USA; it is possible to have several research questions or hypotheses and include primary studies in the review from different theoretical and methodological approaches; it is a type of review that can go beyond the analysis and synthesis of findings from primary studies allowing exploiting other research dimensions, and that presents potentialities for the development of new theories and new problems for research. Conclusion: IR is understood as a very complex type of review and it is expected to be developed using standardized and systematic methods to ensure the required rigor of scientific research and therefore the legitimacy of the established evidence.
Resumo:
Flow cytometry (FCM) is emerging as an important tool in environmental microbiology. Although flow cytometry applications have to date largely been restricted to certain specialized fields of microbiology, such as the bacterial cell cycle and marine phytoplankton communities, technical advances in instrumentation and methodology are leading to its increased popularity and extending its range of applications. Here we will focus on a number of recent flow cytometry developments important for addressing questions in environmental microbiology. These include (i) the study of microbial physiology under environmentally relevant conditions, (ii) new methods to identify active microbial populations and to isolate previously uncultured microorganisms, and (iii) the development of high-throughput autofluorescence bioreporter assays
Resumo:
Elucidating the molecular and neural basis of complex social behaviors such as communal living, division of labor and warfare requires model organisms that exhibit these multi-faceted behavioral phenotypes. Social insects, such as ants, bees, wasps and termites, are attractive models to address this problem, with rich ecological and ethological foundations. However, their atypical systems of reproduction have hindered application of classical genetic approaches. In this review, we discuss how recent advances in social insect genomics, transcriptomics, and functional manipulations have enhanced our ability to observe and perturb gene expression, physiology and behavior in these species. Such developments begin to provide an integrated view of the molecular and cellular underpinnings of complex social behavior.
Resumo:
In this paper we proose the infimum of the Arrow-Pratt index of absoluterisk aversion as a measure of global risk aversion of a utility function.We then show that, for any given arbitrary pair of distributions, thereexists a threshold level of global risk aversion such that all increasingconcave utility functions with at least as much global risk aversion wouldrank the two distributions in the same way. Furthermore, this thresholdlevel is sharp in the sense that, for any lower level of global riskaversion, we can find two utility functions in this class yielding oppositepreference relations for the two distributions.
Resumo:
We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7, 1-16 (doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments.
Resumo:
We introduce a variation of the proof for weak approximations that issuitable for studying the densities of stochastic processes which areevaluations of the flow generated by a stochastic differential equation on a random variable that maybe anticipating. Our main assumption is that the process and the initial random variable have to be smooth in the Malliavin sense. Furthermore if the inverse of the Malliavin covariance matrix associated with the process under consideration is sufficiently integrable then approximations fordensities and distributions can also be achieved. We apply theseideas to the case of stochastic differential equations with boundaryconditions and the composition of two diffusions.
Resumo:
The network revenue management (RM) problem arises in airline, hotel, media,and other industries where the sale products use multiple resources. It can be formulatedas a stochastic dynamic program but the dynamic program is computationallyintractable because of an exponentially large state space, and a number of heuristicshave been proposed to approximate it. Notable amongst these -both for their revenueperformance, as well as their theoretically sound basis- are approximate dynamic programmingmethods that approximate the value function by basis functions (both affinefunctions as well as piecewise-linear functions have been proposed for network RM)and decomposition methods that relax the constraints of the dynamic program to solvesimpler dynamic programs (such as the Lagrangian relaxation methods). In this paperwe show that these two seemingly distinct approaches coincide for the network RMdynamic program, i.e., the piecewise-linear approximation method and the Lagrangianrelaxation method are one and the same.
Resumo:
Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.
Resumo:
A new algorithm called the parameterized expectations approach(PEA) for solving dynamic stochastic models under rational expectationsis developed and its advantages and disadvantages are discussed. Thisalgorithm can, in principle, approximate the true equilibrium arbitrarilywell. Also, this algorithm works from the Euler equations, so that theequilibrium does not have to be cast in the form of a planner's problem.Monte--Carlo integration and the absence of grids on the state variables,cause the computation costs not to go up exponentially when the numberof state variables or the exogenous shocks in the economy increase. \\As an application we analyze an asset pricing model with endogenousproduction. We analyze its implications for time dependence of volatilityof stock returns and the term structure of interest rates. We argue thatthis model can generate hump--shaped term structures.
Resumo:
Among the underlying assumptions of the Black-Scholes option pricingmodel, those of a fixed volatility of the underlying asset and of aconstantshort-term riskless interest rate, cause the largest empirical biases. Onlyrecently has attention been paid to the simultaneous effects of thestochasticnature of both variables on the pricing of options. This paper has tried toestimate the effects of a stochastic volatility and a stochastic interestrate inthe Spanish option market. A discrete approach was used. Symmetricand asymmetricGARCH models were tried. The presence of in-the-mean and seasonalityeffectswas allowed. The stochastic processes of the MIBOR90, a Spanishshort-terminterest rate, from March 19, 1990 to May 31, 1994 and of the volatilityofthe returns of the most important Spanish stock index (IBEX-35) fromOctober1, 1987 to January 20, 1994, were estimated. These estimators wereused onpricing Call options on the stock index, from November 30, 1993 to May30, 1994.Hull-White and Amin-Ng pricing formulas were used. These prices werecomparedwith actual prices and with those derived from the Black-Scholesformula,trying to detect the biases reported previously in the literature. Whereasthe conditional variance of the MIBOR90 interest rate seemed to be freeofARCH effects, an asymmetric GARCH with in-the-mean and seasonalityeffectsand some evidence of persistence in variance (IEGARCH(1,2)-M-S) wasfoundto be the model that best represent the behavior of the stochasticvolatilityof the IBEX-35 stock returns. All the biases reported previously in theliterature were found. All the formulas overpriced the options inNear-the-Moneycase and underpriced the options otherwise. Furthermore, in most optiontrading, Black-Scholes overpriced the options and, because of thetime-to-maturityeffect, implied volatility computed from the Black-Scholes formula,underestimatedthe actual volatility.