867 resultados para stepped wedge
Resumo:
This work investigated the purification of phosphoric acid using a suitable organic solvent, followed by re-extraction of the acid from the solvent using water. The work consisted of practical batch and continuous studies and the economics and design of a full scale plant, based on the experimental data. A comprehensive literature survey on the purification of wet process phosphoric acid by organic solvents is presented and the literature describing the design and operation of mixer-settlers has also been reviewed. In batch studies, the equilibrium and distribution curves for the systems water-phosphoric acid-solvent for Benzaldehyde, Cyclohexanol and Methylisobutylketone (MIBK) were determined together with hydrodynamic characteristics for both pure and impure systems. The settling time increased with acid concentration, but power input had no effect. Drop size was found to reduce with acid concentration and power input. For the continuous studies a novel horizontal mixer~settler cascade was designed, constructed and operated using pure and impure acid with MIBK as the solvent. The cascade incorporates three air turbine agitated, cylindrical 900 ml mixers, and three cylindrical 200 ml settlers with air-lift solvent interstage transfer. Mean drop size in the fully baffled mixer was correlated. Drop size distributions were log-normal and size decreased with acid concentration and power input and increased with dispersed phase hold-up. Phase inversion studies showed that the width of the ambivalent region depended upon rotor speed, hold-up and acid concentration. Settler characteristics were investigated by measuring wedge length. Distribution coefficients of impurities and acid were also investigated. The following optimum extraction conditions were found: initial acid concentration 63%, phase ratio of solvent to acid 1:1 (v/v), impeller speed recommended 900 r.p.m. In the washing step the maximum phase ratio of solvent to water was 8:1 (v/v). Work on phosphoric acid concentration involved constructing distillation equipment consisting of a 10& spherical still. A 100 T/d scale detailed process design including capital cost, operating cost and profitability was also completed. A profit model for phosphoric acid extraction was developed and maximised. Recommendations are made for both the application of the results to a practical design and for extensions of the study.
Resumo:
A wire drive pulse echo method of measuring the spectrum of solid bodies described. Using an 's' plane representation, a general analysis of the transient response of such solids has been carried out. This was used for the study of the stepped amplitude transient of high order modes of disks and for the case where there are two adjacent resonant frequencies. The techniques developed have been applied to the measurenent of the elasticities of refractory materials at high temperatures. In the experimental study of the high order in-plane resonances of thin disks it was found that the energy travelled at the edge of the disk and this initiated the work on one dimensional Rayleigh waves.Their properties were established for the straight edge condition by following an analysis similar to that of the two dimensional case. Experiments were then carried out on the velocity dispersion of various circuits including the disk and a hole in a large plate - the negative curvature condition.Theoretical analysis established the phase and group velocities for these cases and experimental tests on aluminium and glass gave good agreement with theory. At high frequencies all velocities approach that of the one dimensional Rayleigh waves. When applied to crack detection it was observed that a signal burst travelling round a disk showed an anomalous amplitude effect. In certain cases the signal which travelled the greater distance had the greater amplitude.An experiment was designed to investigate the phenanenon and it was established that the energy travelled in two nodes with different velocities.It was found by analysis that as well as the Rayleigh surface wave on the edge, a seoond node travelling at about the shear velocity was excited and the calculated results gave reasonable agreement with the experiments.
Resumo:
It is well established that hydrodynamic journal bearings are responsible for self-excited vibrations and have the effect of lowering the critical speeds of rotor systems. The forces within the oil film wedge, generated by the vibrating journal, may be represented by displacement and velocity coefficient~ thus allowing the dynamical behaviour of the rotor to be analysed both for stability purposes and for anticipating the response to unbalance. However, information describing these coefficients is sparse, misleading, and very often not applicable to industrial type bearings. Results of a combined analytical and experimental investigation into the hydrodynamic oil film coefficients operating in the laminar region are therefore presented, the analysis being applied to a 120 degree partial journal bearing having a 5.0 in diameter journal and a LID ratio of 1.0. The theoretical analysis shows that for this type of popular bearing, the eight linearized coefficients do not accurately describe the behaviour of the vibrating journal based on the theory of small perturbations, due to them being masked by the presence of nonlinearity. A method is developed using the second order terms of Taylor expansion whereby design charts are provided which predict the twentyeight force coefficients for both aligned, and for varying amounts of journal misalignment. The resulting non-linear equations of motion are solved using a modified Newton-Raphson method whereby the whirl trajectories are obtained, thus providing a physical appreciation of the bearing characteristics under dynamically loaded conditions.
Resumo:
The reliability of the printed circuit board assembly under dynamic environments, such as those found onboard airplanes, ships and land vehicles is receiving more attention. This research analyses the dynamic characteristics of the printed circuit board (PCB) supported by edge retainers and plug-in connectors. By modelling the wedge retainer and connector as providing simply supported boundary condition with appropriate rotational spring stiffnesses along their respective edges with the aid of finite element codes, accurate natural frequencies for the board against experimental natural frequencies are obtained. For a PCB supported by two opposite wedge retainers and a plug-in connector and with its remaining edge free of any restraint, it is found that these real supports behave somewhere between the simply supported and clamped boundary conditions and provide a percentage fixity of 39.5% more than the classical simply supported case. By using an eigensensitivity method, the rotational stiffnesses representing the boundary supports of the PCB can be updated effectively and is capable of representing the dynamics of the PCB accurately. The result shows that the percentage error in the fundamental frequency of the PCB finite element model is substantially reduced from 22.3% to 1.3%. The procedure demonstrated the effectiveness of using only the vibration test frequencies as reference data when the mode shapes of the original untuned model are almost identical to the referenced modes/experimental data. When using only modal frequencies in model improvement, the analysis is very much simplified. Furthermore, the time taken to obtain the experimental data will be substantially reduced as the experimental mode shapes are not required.In addition, this thesis advocates a relatively simple method in determining the support locations for maximising the fundamental frequency of vibrating structures. The technique is simple and does not require any optimisation or sequential search algorithm in the analysis. The key to the procedure is to position the necessary supports at positions so as to eliminate the lower modes from the original configuration. This is accomplished by introducing point supports along the nodal lines of the highest possible mode from the original configuration, so that all the other lower modes are eliminated by the introduction of the new or extra supports to the structure. It also proposes inspecting the average driving point residues along the nodal lines of vibrating plates to find the optimal locations of the supports. Numerical examples are provided to demonstrate its validity. By applying to the PCB supported on its three sides by two wedge retainers and a connector, it is found that a single point constraint that would yield maximum fundamental frequency is located at the mid-point of the nodal line, namely, node 39. This point support has the effect of increasing the structure's fundamental frequency from 68.4 Hz to 146.9 Hz, or 115% higher.
Resumo:
This paper studies the payout policy of Italian firms controlled by large majority shareholders (controlled firms). The paper reports that a firm’s share of dividends in total payout (dividends plus repurchases) is negatively related to the size of the cash flow stake of the firm’s controlling shareholder and positively associated with the wedge between the controlling shareholder’s control rights and cash flow rights. These findings are consistent with the substitute model of payout. One of the implications of this model is that controlled firms with weak corporate governance set-ups, in which controlling shareholders have strong incentives to expropriate minority shareholders, tend to prefer dividends over repurchases when disgorging cash.
Resumo:
Our paper presents the work of the Cuneiform Digital Forensic Project (CDFP), an interdisciplinary project at The University of Birmingham, concerned with the development of a multimedia database to support scholarly research into cuneiform, wedge-shaped writing imprinted onto clay tablets and indeed the earliest real form of writing. We describe the evolutionary design process and dynamic research and developmental cycles associated with the database. Unlike traditional publications, the electronic publication of resources offers the possibility of almost continuous revisions with the integration and support of new media and interfaces. However, if on-line resources are to win the favor and confidence of their respective communities there must be a clear distinction between published and maintainable resources, and, developmental content. Published material should, ideally, be supported via standard web-browser interfaces with fully integrated tools so that users receive a reliable, homogenous and intuitive flow of information and media relevant to their needs. We discuss the inherent dynamics of the design and publication of our on-line resource, starting with the basic design and maintenance aspects of the electronic database, which includes photographic instances of cuneiform signs, and shows how the continuous review process identifies areas for further research and development, for example, the “sign processor” graphical search tool and three-dimensional content, the results of which then feedback into the maintained resource.
Resumo:
Size-controlled MgO nanocrystals were synthesised via a simple sol-gel method and their bulk and surface properties characterised by powder XRD, HRTEM and XPS. Small, cubic MgO single crystals, generated by low temperature processing, expose weakly basic (100) surfaces. High temperature annealing transforms these into large, stepped cuboidal nanoparticles of periclase MgO which terminate in more basic (110) and (111) surfaces. The size dependent evolution of surface electronic structure correlates directly with the associated catalytic activity of these MgO nanocrystals towards glyceryl tributyrate transesterification, revealing a pronounced structural preference for (110) and (111) facets. © 2009 The Royal Society of Chemistry.
Resumo:
High temperature processing of solvothermally synthesised MgO nanoparticles promotes striking changes in their morphology, and surface chemical and electronic structure. As-prepared NanoMgO comprised ∼4 nm cubic periclase nanocrystals, interspersed within an amorphous Mg(OH)(OCH3) matrix. These crystallites appear predominantly (1 0 0) terminated, and the overall material exhibits carbonate and hydroxyl surface functionalities of predominantly weak/moderate base character. Heating promotes gradual crystallisation and growth of the MgO nanoparticles, and concomitant loss of Mg(OH)(OCH3). In situ DRIFTS confirms the residual precursor and surface carbonate begin to decompose above 300 °C, while in situ XPS shows these morphological changes are accompanied by the disappearance of surface hydroxyl/methoxide species and genesis of O- centres which enhance both the surface density and basicity of the resulting stepped and defective MgO nanocrystals. The catalytic performance in tributyrin transesterification with methanol is directly proportional to the density of strong surface base sites. © 2010 Elsevier B.V. All rights reserved.
Resumo:
As we welcome 2014 we say goodbye to 2013 and I must start with an apology to authors who have submitted papers to CLAE and seen a delay in either the review process or the hard copy publication of their proofed article. The delays were caused by a major hike in the number of submissions to the journal in 2012 that increased further in 2013. In the 12 months leading to the end of October 2011 we had 94 new paper submissions, and for the same period to the end of 2012 the journal had 116 new papers. In 2012 we were awarded an impact factor for the first time and following that the next 12 month period to the end of October 2013 saw a massive increase in submissions with 171 new manuscripts being submitted. This is nearly twice as many papers as 2 years ago and 3 times as many as when I took over as Editor-in-Chief. In addition to this the UK academics will know that 2014 is a REF year (Research Excellence Framework) where universities are judged on their research and one of the major components of this measure remains to be published papers so there is a push to publishing before the REF deadline for counting. The rejection rate at CLAE has gone up too and currently is around 50% (more than double the rejection rate when I took over as Editor-in-Chief). At CLAE the number of pages that we publish each year has remained the same since 2007. When compiling issue 1 for 2014 I chose the papers to be included from the papers that were proofed and ready to go and there were around 200 proofed pages ready, which is enough to fill 3½ issues! At present Elsevier and the BCLA are preparing to increase the number the pages published per issue so that we can clear some of this backlog and remain up to date with the papers published in CLAE. I should add that on line publishing of papers is still available and there may have been review delays but there are no publishing online so authors can still get an epub on line final version of their paper with a DOI (digital object identifier) number enabling the paper to be cited. There are two awards that were made in 2013 that I would like to make special mention of. One was for my good friend Jan Bergmanson, who was awarded an honorary life fellowship of the College of Optometrists. Jan has served on the editorial board of CLAE for many years and in 2013 also celebrated 30 years of his annual ‘Texan Corneal and contact lens meeting’. The other award I wish to mention is Judith Morris, who was the BCLA Gold Medal Award winner in 2013. Judith has had many roles in her career and worked at Moorfields Eye Hospital, the Institute of Optometry and currently at City University. She has been the Europe Middle East and Africa President of IACLE (International Association of Contact Lens Educators) for many years and I think I am correct in saying that Judith is the only person who was President of both the BCLA (1983) and a few years later she was the President College of Optometrists (1989). Judith was also instrumental in introducing Vivien Freeman to the BCLA as they had been friends and Judith suggested that Vivien apply for an administrative job at the BCLA. Fast forward 29 years and in December 2013 Vivien stepped down as Secretary General of the BCLA. I would like to offer my own personal thanks to Vivien for her support of CLAE and of me over the years. The BCLA will not be the same and I wish you well in your future plans. But 2014 brings in a new position to the BCLA – Cheryl Donnelly has been given the new role of Chief Executive Officer. Cheryl was President of the BCLA in 2000 and has previously served on council. I look forward to working with Cheryl and envisage a bright future for the BCLA and CLAE. In this issue we have some great papers including some from authors who have not published with CLAE before. There is a nice paper on contact lens compliance in Nepal which brings home some familiar messages from an emerging market. A paper on how corneal curvature is affected by the use of hydrogel lenses is useful when advising patients how long they should leave their contact lenses out for to avoid seeing changes in refraction or curvature. This is useful information when refracting these patients or pre-laser surgery. There is a useful paper offering tips on fitting bitoric gas permeable lenses post corneal graft and a paper detailing surgery to implant piggyback multifocal intraocular lenses. One fact that I noted from the selection of papers in the current issue is where they were from. In this issue none of the corresponding authors are from the United Kingdom. There are two papers each from the United States, Spain and Iran, and one each from the Netherlands, Ireland, Republic of Korea, Australia and Hong Kong. This is an obvious reflection of the widening interest in CLAE and the BCLA and indicates the new research groups emerging in the field.
Resumo:
ACM Computing Classification System (1998): J.2.
Resumo:
Objectives: To develop a decision support system (DSS), myGRaCE, that integrates service user (SU) and practitioner expertise about mental health and associated risks of suicide, self-harm, harm to others, self-neglect, and vulnerability. The intention is to help SUs assess and manage their own mental health collaboratively with practitioners. Methods: An iterative process involving interviews, focus groups, and agile software development with 115 SUs, to elicit and implement myGRaCE requirements. Results: Findings highlight shared understanding of mental health risk between SUs and practitioners that can be integrated within a single model. However, important differences were revealed in SUs' preferred process of assessing risks and safety, which are reflected in the distinctive interface, navigation, tool functionality and language developed for myGRaCE. A challenge was how to provide flexible access without overwhelming and confusing users. Conclusion: The methods show that practitioner expertise can be reformulated in a format that simultaneously captures SU expertise, to provide a tool highly valued by SUs. A stepped process adds necessary structure to the assessment, each step with its own feedback and guidance. Practice Implications: The GRiST web-based DSS (www.egrist.org) links and integrates myGRaCE self-assessments with GRiST practitioner assessments for supporting collaborative and self-managed healthcare.
Resumo:
Finite Difference Time Domain (FDTD) Method and software are applied to obtain diffraction waves from modulated Gaussian plane wave illumination for right angle wedges and Fast Fourier Transform (FFT) is used to get diffraction coefficients in a wideband in the illuminated lit region. Theta and Phi polarization in 3-dimensional, TM and TE polarization in 2-dimensional cases are considered respectively for soft and hard diffraction coefficients. Results using FDTD method of perfect electric conductor (PEC) wedge are compared with asymptotic expressions from Uniform Theory of Diffraction (UTD). Extend the PEC wedges to some homogenous conducting and dielectric building materials for diffraction coefficients that are not available analytically in practical conditions. ^
Resumo:
Electromagnetic waves in suburban environment encounter multiple obstructions that shadow the signal. These waves are scattered and random in polarization. They take multiple paths that add as vectors at the portable device. Buildings have vertical and horizontal edges. Diffraction from edges has polarization dependent characteristics. In practical case, a signal transmitted from a vertically polarized high antenna will result in a significant fraction of total power in the horizontal polarization at the street level. Signal reception can be improved whenever there is a probability of receiving the signal in at least two independent ways or branches. The Finite-Difference Time-Domain (FDTD) method was applied to obtain the two and three-dimensional dyadic diffraction coefficients (soft and hard) of right-angle perfect electric conductor (PEC) wedges illuminated by a plane wave. The FDTD results were in good agreement with the asymptotic solutions obtained using Uniform Theory of Diffraction (UTD). Further, a material wedge replaced the PEC wedge and the dyadic diffraction coefficient for the same was obtained.
Resumo:
A large series of laboratory ice crushing experiments was performed to investigate the effects of external boundary condition and indenter contact geometry on ice load magnitude under crushing conditions. Four boundary conditions were considered: dry cases, submerged cases, and cases with the presence of snow and granular ice material on the indenter surface. Indenter geometries were a flat plate, wedge shaped indenter, (reverse) conical indenter, and spherical indenter. These were impacted with artificially produced ice specimens of conical shape with 20° and 30° cone angles. All indenter – ice combinations were tested in dry and submerged environments at 1 mm/s and 100 mm/s indentation rates. Additional tests with the flat indentation plate were conducted at 10 mm/s impact velocity and a subset of scenarios with snow and granular ice material was evaluated. The tests were performed using a material testing system (MTS) machine located inside a cold room at an ambient temperature of - 7°C. Data acquisition comprised time, vertical force, and displacement. In several tests with the flat plate and wedge shaped indenter, supplementary information on local pressure patterns and contact area were obtained using tactile pressure sensors. All tests were recorded with a high speed video camera and still photos were taken before and after each test. Thin sections were taken of some specimens as well. Ice loads were found to strongly depend on contact condition, interrelated with pre-existing confinement and indentation rate. Submergence yielded higher forces, especially at the high indentation rate. This was very evident for the flat indentation plate and spherical indenter, and with restrictions for the wedge shaped indenter. No indication was found for the conical indenter. For the conical indenter it was concluded that the structural restriction due to the indenter geometry was dominating. The working surface for the water to act was not sufficient to influence the failure processes and associated ice loads. The presence of snow and granular ice significantly increased the forces at the low indentation rate (with the flat indentation plate) that were higher compared to submerged cases and far above the dry contact condition. Contact area measurements revealed a correlation of higher forces with a concurrent increase in actual contact area that depended on the respective boundary condition. In submergence, ice debris constitution was changed; ice extrusion, as well as crack development and propagation were impeded. Snow and granular ice seemed to provide additional material sources for establishing larger contact areas. The dry contact condition generally had the smallest real contact area, as well as the lowest forces. The comparison of nominal and measured contact areas revealed distinct deviations. The incorporation of those differences in contact process pressures-area relationships indicated that the overall process pressure was not substantially affected by the increased loads.
Resumo:
Acknowledgments The authors gratefully acknowledge the support of the German Research Foundation (DFG) through the Cluster of Excellence ‘Engineering of Advanced Materials’ at the University of Erlangen-Nuremberg and through Grant Po 472/25.