979 resultados para state-selective differential cross sections
Resumo:
The isotopic composition of hydrogen and helium in solar cosmic rays provides a means of studying solar flare particle acceleration mechanisms since the enhanced relative abundance of rare isotopes, such as 2H, 3H and 3He, is due to their production by inelastic nuclear collisions in the solar atmosphere during the flare. In this work the Caltech Electron/Isotope Spectrometer on the IMP-7 spacecraft has been used to measure this isotopic composition. The response of the dE/dx-E particle telescope is discussed and alpha particle channeling in thin detectors is identified as an important background source affecting measurement of low values of (3He/4He).
The following flare-averaged results are obtained for the period, October, 1972 - November, 1973: (2H/1H) = 7+10-6 X 10-6 (1.6 - 8.6 MeV/nuc), (3H/1H) less than 3.4 x 10-6 (1.2 - 6.8 MeV/nuc), (3He/4He) = (9 ± 4) x 10-3, (3He/1H) = (1.7 ± 0.7) x 10-4 (3.1 - 15.0 MeV/nuc). The deuterium and tritium ratios are significantly lower than the same ratios at higher energies, suggesting that the deuterium and tritium spectra are harder than that of the protons. They are, however, consistent with the same thin target model relativistic path length of ~ 1 g/cm2 (or equivalently ~ 0.3 g/cm2 at 30 MeV/nuc) which is implied by the higher energy results. The 3He results, consistent with previous observations, would imply a path length at least 3 times as long, but the observations may be contaminated by small 3He rich solar events.
During 1973 three "3He rich events," containing much more 3He than 2H or 3H were observed on 14 February, 29 June and 5 September. Although the total production cross sections for 2H,3H and 3He are comparable, an upper limit to (2H/3He) and (3H/3He) was 0.053 (2.9-6.8 MeV/nuc), summing over the three events. This upper limit is marginally consistent with Ramaty and Kozlovsky's thick target model which accounts for such events by the nuclear reaction kinematics and directional properties of the flare acceleration process. The 5 September event was particularly significant in that much more 3He was observed than 4He and the fluxes of 3He and 1H were about equal. The range of (3He/4He) for such events reported to date is 0.2 to ~ 6 while (3He/1H) extends from 10-3 to ~ 1. The role of backscattered and mirroring protons and alphas in accounting for such variations is discussed.
Resumo:
Analysis of the data from the Heavy Nuclei Experiment on the HEAO-3 spacecraft has yielded the cosmic ray abundances of odd-even element pairs with atomic number, Z, in the range 33 ≤ Z ≤60, and the abundances of broad element groups in the range 62 ≤ Z ≤83, relative to iron. These data show that the cosmic ray source composition in this charge range is quite similar to that of the solar system provided an allowance is made for a source fractionation based on first ionization potential. The observations are inconsistent with a source composition which is dominated by either r-process or s-process material, whether or not an allowance is made for first ionization potential. Although the observations do not exclude a source containing the same mixture of r- and s-process material as in the solar system. the data are best fit by a source having an r- to s-process ratio of 1.22^(+0.25)_(0.21), relative to the solar system The abundances of secondary elements are consistent with the leaky box model of galactic propagation, implying a pathlength distribution similar to that which explains the abundances of nuclei with Z<29.
The energy spectra of the even elements in the range 38 ≤ Z ≤ 60 are found to have a deficiency of particles in the range ~1.5 to 3 GeV/amu, compared to iron. This deficiency may result from ionization energy loss in the interstellar medium, and is not predicted by propagation models which ignore such losses. ln addition, the energy spectra of secondary elements are found to be different to those of the primary elements. Such effects are consistent with observations of lighter nuclei, and are in qualitative agreement with galactic propagation models using a rigidity dependent escape length. The energy spectra of secondaries arising from the platinum group are found to be much steeper than those of lower Z. This effect may result from energy dependent fragmentation cross sections.
Resumo:
This thesis has two major parts. The first part of the thesis will describe a high energy cosmic ray detector -- the High Energy Isotope Spectrometer Telescope (HEIST). HEIST is a large area (0.25 m2sr) balloon-borne isotope spectrometer designed to make high-resolution measurements of isotopes in the element range from neon to nickel (10 ≤ Z ≤ 28) at energies of about 2 GeV/nucleon. The instrument consists of a stack of 12 NaI(Tl) scintilla tors, two Cerenkov counters, and two plastic scintillators. Each of the 2-cm thick NaI disks is viewed by six 1.5-inch photomultipliers whose combined outputs measure the energy deposition in that layer. In addition, the six outputs from each disk are compared to determine the position at which incident nuclei traverse each layer to an accuracy of ~2 mm. The Cerenkov counters, which measure particle velocity, are each viewed by twelve 5-inch photomultipliers using light integration boxes.
HEIST-2 determines the mass of individual nuclei by measuring both the change in the Lorentz factor (Δγ) that results from traversing the NaI stack, and the energy loss (ΔΕ) in the stack. Since the total energy of an isotope is given by Ε = γM, the mass M can be determined by M = ΔΕ/Δγ. The instrument is designed to achieve a typical mass resolution of 0.2 amu.
The second part of this thesis presents an experimental measurement of the isotopic composition of the fragments from the breakup of high energy 40Ar and 56Fe nuclei. Cosmic ray composition studies rely heavily on semi-empirical estimates of the cross-sections for the nuclear fragmentation reactions which alter the composition during propagation through the interstellar medium. Experimentally measured yields of isotopes from the fragmentation of 40Ar and 56Fe are compared with calculated yields based on semi-empirical cross-section formulae. There are two sets of measurements. The first set of measurements, made at the Lawrence Berkeley Laboratory Bevalac using a beam of 287 MeV/nucleon 40Ar incident on a CH2 target, achieves excellent mass resolution (σm ≤ 0.2 amu) for isotopes of Mg through K using a Si(Li) detector telescope. The second set of measurements, also made at the Lawrence Berkeley Laboratory Bevalac, using a beam of 583 MeV/nucleon 56FeFe incident on a CH2 target, resolved Cr, Mn, and Fe fragments with a typical mass resolution of ~ 0.25 amu, through the use of the Heavy Isotope Spectrometer Telescope (HIST) which was later carried into space on ISEE-3 in 1978. The general agreement between calculation and experiment is good, but some significant differences are reported here.
Resumo:
O trabalho teve como escopo a caracterização geológica, em termos estruturais e estratigráficos, do sistema petrolífero responsável pela ocorrência de óleos encontrados na Formação Rio Bonito, na região carbonífera de Santa Catarina. Atualmente, especula-se que a assinatura geoquímica destes óleos relaciona-se à Formação Irati associado a um modelo não convencional de geração, vinculando a maturação térmica à intrusão de diabásio, devido a um soterramento insuficiente da rocha geradora. Como a Formação Irati encontra-se posicionada estratigraficamente acima da Formação Rio Bonito, o sistema está associado a um forte controle estrutural para o modelo de migração. A preparação de um mapa geológico integrado para a área de estudo envolvendo dados geológicos de campo, dados aeromagnetométricos e informações de furos de sondagem permitiu um entendimento mais aprofundado do arcabouço tectônico-estratigráfico da região. Seções geológicas mostraram a presença de falhas de grandes rejeitos que promoveram um sistema de Horsts e Grabens relacionados às NE-SW e secundariamente a falhas E-W, que permitiram a colocação da Formação Irati em contato lateral ou em um posicionamento abaixo da Formação Rio Bonito. A partir das seções cronoestratigráficas elaboradas foi possível reconhecer prováveis selos, trapas estratigráficos e estruturais, associados ao sistema petrolífero Irati-Rio Bonito. A análise geoquímica (isótopos e biomarcadores) dos óleos coletados na Formação Rio Bonito apontaram que os mesmos estão associadas aos folhelhos do Membro Assistência da Formação Irati, por possuírem uma razão pristano/fitano menor que 1, gamacerano, e a presença de isoprenóides pentametileicosano (i-25) e esqualano (i-30). A partir de análises geoquímicas realizadas em extratos orgânicos extraídos de folhelhos da Formação Irati intrudidos por diabásio, obteve-se valores da relação entre biomarcadores correspondentes e valores de Ro que indicam que foi alcançado o pico de geração de óleo. Contudo, não há registro na área de estudo de um soterramento suficiente que favorecesse essa situação, levando-nos, assim, a acreditar em um modelo de geração não convencional, por meio da intrusão de diabásio nas rochas geradoras. O arcabouço estrutural e os óleos estudados na região sugerem um processo migratório de sudoeste para o nordeste, ao longo de um sistema de falhas NE-SW, encontradas na região, que foram geradas anteriormente ou concomitantemente ao derrame basáltico associado à Formação Serra Geral.
Resumo:
Pulse-height and time-of-flight methods have been used to measure the electronic stopping cross sections for projectiles of 12C, 16O, 19F, 23Na, 24Mg, and 27Al, slowing in helium, neon, argon, krypton, and xenon. The ion energies were in the range 185 keV ≤ E ≤ 2560 keV.
A semiempirical calculation of the electronic stopping cross section for projectiles with atomic numbers between 6 and 13 passing through the inert gases has been performed using a modification of the Firsov model. Using Hartree-Slater-Fock orbitals, and summing over the losses for the individual charge states of the projectiles, good agreement has been obtained with the experimental data. The main features of the stopping cross section seen in the data, such as the Z1 oscillation and the variation of the velocity dependence on Z1 and Z2, are present in the calculation. The inclusion of a modified form of the Bethe-Bloch formula as an additional term allows the increase of the velocity dependence for projectile velocities above vo to be reproduced in the calculation.
Resumo:
The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century.
This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells.
Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression with superior mass efficiency.
An efficient computational method for the buckling analysis of corrugated and stiffened cylindrical shells subject to axial compression has been developed in this thesis. This method modifies the traditional Bloch wave method based on the stiffness matrix method of rotationally periodic structures. A highly efficient algorithm has been developed to implement the modified Bloch wave method. This method is applied in buckling analyses of a series of corrugated composite cylindrical shells and a large-scale orthogonally stiffened aluminum cylindrical shell. Numerical examples show that the modified Bloch wave method can achieve very high accuracy and require much less computational time than linear and nonlinear analyses of detailed full finite element models.
This thesis presents parametric studies on a series of externally pressurized pseudo-spherical shells, i.e., polyhedral shells, including icosahedron, geodesic shells, and triambic icosahedra. Several optimization methods have been developed to further improve the performance of pseudo-spherical shells under external pressure. It has been shown that the buckling pressures of the shell designs obtained from the optimizations are much higher than the spherical shells and not sensitive to imperfections.
Resumo:
I. Crossing transformations constitute a group of permutations under which the scattering amplitude is invariant. Using Mandelstem's analyticity, we decompose the amplitude into irreducible representations of this group. The usual quantum numbers, such as isospin or SU(3), are "crossing-invariant". Thus no higher symmetry is generated by crossing itself. However, elimination of certain quantum numbers in intermediate states is not crossing-invariant, and higher symmetries have to be introduced to make it possible. The current literature on exchange degeneracy is a manifestation of this statement. To exemplify application of our analysis, we show how, starting with SU(3) invariance, one can use crossing and the absence of exotic channels to derive the quark-model picture of the tensor nonet. No detailed dynamical input is used.
II. A dispersion relation calculation of the real parts of forward π±p and K±p scattering amplitudes is carried out under the assumption of constant total cross sections in the Serpukhov energy range. Comparison with existing experimental results as well as predictions for future high energy experiments are presented and discussed. Electromagnetic effects are found to be too small to account for the expected difference between the π-p and π+p total cross sections at higher energies.
Resumo:
This study investigates lateral mixing of tracer fluids in turbulent open-channel flows when the tracer and ambient fluids have different densities. Longitudinal dispersion in flows with longitudinal density gradients is investigated also.
Lateral mixing was studied in a laboratory flume by introducing fluid tracers at the ambient flow velocity continuously and uniformly across a fraction of the flume width and over the entire depth of the ambient flow. Fluid samples were taken to obtain concentration distributions in cross-sections at various distances, x, downstream from the tracer source. The data were used to calculate variances of the lateral distributions of the depth-averaged concentration. When there was a difference in density between the tracer and the ambient fluids, lateral mixing close to the source was enhanced by density-induced secondary flows; however, far downstream where the density gradients were small, lateral mixing rates were independent of the initial density difference. A dimensional analysis of the problem and the data show that the normalized variance is a function of only three dimensionless numbers, which represent: (1) the x-coordinate, (2) the source width, and (3) the buoyancy flux from the source.
A simplified set of equations of motion for a fluid with a horizontal density gradient was integrated to give an expression for the density-induced velocity distribution. The dispersion coefficient due to this velocity distribution was also obtained. Using this dispersion coefficient in an analysis for predicting lateral mixing rates in the experiments of this investigation gave only qualitative agreement with the data. However, predicted longitudinal salinity distributions in an idealized laboratory estuary agree well with published data.
Resumo:
An exact solution to the monoenergetic Boltzmann equation is obtained for the case of a plane isotropic burst of neutrons introduced at the interface separating two adjacent, dissimilar, semi-infinite media. The method of solution used is to remove the time dependence by a Laplace transformation, solve the transformed equation by the normal mode expansion method, and then invert to recover the time dependence.
The general result is expressed as a sum of definite, multiple integrals, one of which contains the uncollided wave of neutrons originating at the source plane. It is possible to obtain a simplified form for the solution at the interface, and certain numerical calculations are made there.
The interface flux in two adjacent moderators is calculated and plotted as a function of time for several moderator materials. For each case it is found that the flux decay curve has an asymptotic slope given accurately by diffusion theory. Furthermore, the interface current is observed to change directions when the scattering and absorption cross sections of the two moderator materials are related in a certain manner. More specifically, the reflection process in two adjacent moderators appears to depend initially on the scattering properties and for long times on the absorption properties of the media.
This analysis contains both the single infinite and semi-infinite medium problems as special cases. The results in these two special cases provide a check on the accuracy of the general solution since they agree with solutions of these problems obtained by separate analyses.
Resumo:
A progress report on the bathymetric survey of Windereme undertaken in June 1937 by the Hydrographic Department of the Admiralty. The brief article outlines the background of the surveying process as well as the initial effectiveness of the survey work. There is a brief background to the geomorphological processes which were involved in shaping the Lake District topography, as well as some explanation of previous studies undertaken in the area. The report includes a figure showing the cross sections of lake beds and a figure detailing a core from the bottom deposits of Windermere.
Resumo:
Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.
Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.
Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.
Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.
Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.
Resumo:
O presente trabalho teve por objetivo quantificar, comparativamente, a área de preenchimento de dois materiais obturadores sólidos, cones de guta-percha (GP) e cones de Resilon (R), no terço apical de incisivos inferiores humanos, ex vivo, obturados pela técnica da onda contínua de condensação. Os espécimes foram submetidos a um protocolo, desde a cirurgia de acesso até o final do preparo químico-mecânico e divididos aleatoriamente em dois grupos, de 21 dentes cada, de acordo com o material utilizado. Não foi utilizado cimento endodôntico em nenhuma das amostras. Após a obturação, as amostras foram seccionadas transversalmente em dois níveis, a 3 e a 5mm do ápice, e subdivididas em grupos de acordo com a altura de corte e do material obturador, sendo estabelecido: GP3 (guta-percha com corte a 3mm), GP5 (guta-percha com corte a 5mm), R3 (Resilon com corte a 3mm) e R5 (Resilon com corte a 5mm). Posteriormente, as amostras foram submetidas a um processo de lixamento e polimento e examinadas em microscópio óptico por reflexão com aumento de 50x a 100x. Para a análise e processamento digital das imagens, foi utilizado o sistema de imagens Axio Vision 4.6 para Windows, sendo obtidas as medidas para cada área observada em micrômetros (μm); uma da área da cavidade, e outra da área de material obturador. Foi aferido o grau de circularidade de cada amostra, por uma fórmula matemática utilizada automaticamente pelo programa, onde 1 (um) é considerado o círculo perfeito e, quanto mais achatado o canal, mais tendente a 0 (zero) nesta escala. Obteve-se a área do canal, a circularidade de 0 a 1, a área preenchida pelo material obturador e, a porcentagem da área de preenchimento do material obturador em relação à área do canal. Foi realizado o cruzamento dos grupos dois a dois pelo teste t de Student, sendo verificada diferença estatisticamente significante entre os grupos GP3 e R3, tendo o grupo R3 apresentado maior porcentagem de área do canal radicular preenchida pelo material obturador em suas amostras (p<0,05). Na relação da circularidade com a quantidade de preenchimento, com o teste de Correlação de Pearson, não foi observada forte correlação entre a forma final do canal (relação de circularidade) e a quantidade de preenchimento do canal radicular pelos materiais obturadores testados. Conclui-se que houve grande variação de preenchimento mínimo e máximo em todos os grupos testados e o Resilon apresentou maior porcentagem de preenchimento de área do canal radicular em suas amostras.
Resumo:
Restrições de espaço e altura são frequentemente impostas às edificações residenciais, comerciais, industriais, depósitos e galpões com um ou diversos pavimentos em função de aspectos de regulamentos regionais, técnicos, econômicos ou ainda de natureza estética. A fim de proporcionar a passagem de tubulações e dutos de grande diâmetro sob vigas de aço, grandes alturas são normalmente requeridas, demandando por vezes, magnitudes de altura inviáveis entre pavimentos de edificações. Diversas soluções estruturais podem ser utilizadas para equacionar tais obstáculos, onde dentre outras, pode-se citar as vigas com inércia variável, stub-girders, treliças mistas, vigas misuladas e vigas com uma ou múltiplas aberturas na alma com geometrias variadas. No que tange às vigas casteladas, solução estrutural pautada neste estudo, a estabilidade é sempre um motivo de preocupação tipicamente durante a construção quando os contraventamentos laterais ainda não estão instalados. De qualquer forma, o comprimento destravado em geral alcançado pelos vãos destas vigas, são longos o suficiente para que a instabilidade ocorra. Todavia, o acréscimo substancial da resistência à flexão de tais membros devido ao aumento da altura oriundo de seu processo fabril em relação ao perfil matriz, aliada a economia de material e utilidade fim de serviço, garante a atratividade no aproveitamento destas, para grandes vãos junto aos projetistas. Não obstante, este aumento proporcional no comprimento dos vãos faz com que a instabilidade lateral ganhe importância especial. Neste contexto, o presente trabalho tem por objetivo desenvolver um modelo numérico que permita a realização de uma avaliação paramétrica a partir da calibração do modelo com resultados experimentais, efetuar a análise do comportamento de vigas casteladas e verificar seus mecanismos de falha, considerando comportamento elasto-plástico, além das não-linearidades geométricas. Também é objetivo deste trabalho, avaliar, quantificar e determinar a influência das diferenças geométricas características das vigas casteladas em relação às vigas maciças com as mesmas dimensões, analisando e descrevendo o comportamento estrutural destas vigas de aço para diversos comprimentos de vãos. A metodologia empregada para tal estudo baseou-se em uma análise paramétrica com o auxílio do método numérico dos elementos finitos.
Resumo:
Three-photon absorption (3PA) of two fluorene-based molecules with D-pi-D structural motifs (abbreviated as BPAF and BCZF) has been determined by using a Q-switched Nd: YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 222 and 140 x 10(-78) cm(6) s(2) for BPAF and BCZF, respectively. AM1 calculations show that attaching different donors changes the charge density distribution of the fluorene skeleton, and it is observed that the 3PA cross-section can be enhanced with increasing intramolecular charge transfer character, measured by the parameter Delta p(1)/Delta p(2)/Delta p(1)'. (c) 2005 Elsevier B.V. All fights reserved.
Resumo:
The three-photon absorption (3PA) properties of two thiophene-fluorene derivatives (abbreviated as MOTFTBr and ATFTBr) have been determined by using a Q-switched Nd:YAG laser pumped wish 38ps pulses at 1064nm in DMF. The measured 3PA cross-sections are 152x10(-78)cm(6)s(2) and 139x10(-78)cm(6)s(2), respectively. The optimized structures were obtained by AM1 calculations and the results indicate that these two molecules show nonplanar structures, and attaching different donors has different effects on the molecular structure. The charge density distributions during the excitation were also systematically studied by using AM1 method. In addition, an obvious optical power limiting effect induced by 3PA has been demonstrated for both derivatives.