943 resultados para spatio-temporal models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the regression framework, we show how different levels of nonlinearity influence the instantaneous firing rate prediction of single neurons. Nonlinearity can be achieved in several ways. In particular, we can enrich the predictor set with basis expansions of the input variables (enlarging the number of inputs) or train a simple but different model for each area of the data domain. Spline-based models are popular within the first category. Kernel smoothing methods fall into the second category. Whereas the first choice is useful for globally characterizing complex functions, the second is very handy for temporal data and is able to include inner-state subject variations. Also, interactions among stimuli are considered. We compare state-of-the-art firing rate prediction methods with some more sophisticated spline-based nonlinear methods: multivariate adaptive regression splines and sparse additive models. We also study the impact of kernel smoothing. Finally, we explore the combination of various local models in an incremental learning procedure. Our goal is to demonstrate that appropriate nonlinearity treatment can greatly improve the results. We test our hypothesis on both synthetic data and real neuronal recordings in cat primary visual cortex, giving a plausible explanation of the results from a biological perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PREDICT POTENTIAL DISTRIBUTION. Spatial and temporal evolution of the species under different climate scenarios. Generation of habitat suitability models (HSM)  high degree of uncertainty and limitations. The importance of their validation has been stressed. In this work we discuss the present potential distribution of P. sylvestris and P. nigra in the Iberian Peninsula by using MaxEnt, and evaluate the influence of the different environmental variables. Our intention is to select a set of environmental variables that explains better their current distribution, to achieve the most accurate and reliable models. Then we project them to the past climatic conditions (21 to 0 kyrs BP), to evaluate the outputs with existing palaeo-ecological data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La presente tesis doctoral tiene por objeto el estudio y análisis de técnicas y modelos de obtención de parámetros biofísicos e indicadores ambientales, de manera automatizada a partir de imágenes procedentes de satélite de alta resolución temporal. En primer lugar se revisan los diferentes programas espaciales de observación del territorio, con especial atención a los que proporcionan dicha resolución. También se han revisado las metodologías y procesos que permiten la obtención de diferentes parámetros cuantitativos y documentos cualitativos, relacionados con diversos aspectos de las cubiertas terrestres, atendiendo a su adaptabilidad a las particularidades de los datos. En segundo lugar se propone un modelo de obtención de parámetros ambientales, que integra información proveniente de sensores espaciales y de otras fuentes auxiliares utilizando, en cierta medida, las metodologías presentadas en apartados anteriores y optimizando algunas de las referidas o proponiendo otras nuevas, de manera que se permita dicha obtención de manera eficiente, a partir de los datos disponibles y de forma sistemática. Tras esta revisión de metodologías y propuesta del modelo, se ha procedido a la realización de experimentos, con la finalidad de comprobar su comportamiento en diferentes casos prácticos, depurar los flujos de datos y procesos, así como establecer las situaciones que pueden afectar a los resultados. De todo ello se deducirá la evaluación del referido modelo. Los sensores considerados en este trabajo han sido MODIS, de alta resolución temporal y Thematic Mapper (TM), de media resolución espacial, por tratarse de instrumentos de referencia en la realización de estudios ambientales. También por la duración de sus correspondientes misiones de registro de datos, lo que permite realizar estudios de evolución temporal de ciertos parámetros biofísicos, durante amplios periodos de tiempo. Así mismo. es de destacar que la continuidad de los correspondientes programas parece estar asegurada. Entre los experimentos realizados, se ha ensayado una metodología para la integración de datos procedentes de ambos sensores. También se ha analizado un método de interpolación temporal que permite obtener imágenes sintéticas con la resolución espacial de TM (30 m) y la temporal de MODIS (1 día), ampliando el rango de aplicación de este último sensor. Asimismo, se han analizado algunos de los factores que afectan a los datos registrados, tal como la geometría de la toma de los mismos y los episodios de precipitación, los cuales alteran los resultados obtenidos. Por otro lado, se ha comprobado la validez del modelo propuesto en el estudio de fenómenos ambientales dinámicos, en concreto la contaminación orgánica de aguas embalsadas. Finalmente, se ha demostrado un buen comportamiento del modelo en todos los casos ensayados, así como su flexibilidad, lo que le permite adaptarse a nuevos orígenes de datos, o nuevas metodologías de cálculo. Abstract This thesis aims to the study and analysis of techniques and models, in order to obtain biophysical parameters and environmental indicators in an automated way, using high temporal resolution satellite data. Firstly we have reviewed the main Earth Observation Programs, paying attention to those that provide high temporal resolution. Also have reviewed the methodologies and process flow diagrams in order to obtain quantitative parameters and qualitative documents, relating to various aspects of land cover, according to their adaptability to the peculiarities of the data. In the next stage, a model which allows obtaining environmental parameters, has been proposed. This structure integrates information from space sensors and ancillary data sources, using the methodologies presented in previous sections that permits the parameters calculation in an efficient and automated way. After this review of methodologies and the proposal of the model, we proceeded to carry out experiments, in order to check the behavior of the structure in real situations. From this, we derive the accuracy of the model. The sensors used in this work have been MODIS, which is a high temporal resolution sensor, and Thematic Mapper (TM), which is a medium spatial resolution instrument. This choice was motivated because they are reference sensors in environmental studies, as well as for the duration of their corresponding missions of data logging, and whose continuity seems assured. Among the experiments, we tested a methodology that allows the integration of data from cited sensors, we discussed a proposal for a temporal interpolation method for obtaining synthetic images with spatial resolution of TM (30 m) and temporal of MODIS (1 day), extending the application range of this one. Furthermore, we have analyzed some of the factors that affect the recorded data, such as the relative position of the satellite with the ground point, and the rainfall events, which alter the obtained results. On the other hand, we have proven the validity of the proposed model in the study of the organic contamination in inland water bodies. Finally, we have demonstrated a good performance of the proposed model in all cases tested, as well as its flexibility and adaptability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este estudio profundiza en la estimación de variables forestales a partir de información LiDAR en el Valle de la Fuenfría (Cercedilla, Madrid). Para ello se dispone de dos vuelos realizados con sensor LiDAR en los años 2002 y 2011 y en el invierno de 2013 se ha realizado un inventario de 60 parcelas de campo. En primer lugar se han estimado seis variables dasométricas (volumen, área basimétrica, biomasa total, altura dominante, densidad y diámetro medio cuadrático) para 2013, tanto a nivel de píxel como a nivel de rodal y monte. Se construyeron modelos de regresión lineal múltiple que permitieron estimar con precisión dichas variables. En segundo lugar, se probaron diferentes métodos para la estimación de la distribución diamétrica. Por un lado, el método de predicción de percentiles y, por otro lado, el método de predicción de parámetros. Este segundo método se probó para una función Weibull simple, una función Weibull doble y una combinación de ambas según la distribución que mejor se ajustaba a cada parcela. Sin embargo, ninguno de los métodos ha resultado suficientemente válido para predecir la distribución diamétrica. Por último se estimaron el crecimiento en volumen y área basimétrica a partir de la comparación de los vuelos del 2002 y 2011. A pesar de que la tecnología LiDAR era diferente y solo se disponía de un inventario completo, realizado en 2013, los modelos construidos presentan buenas bondades de ajuste. Asimismo, el crecimiento a nivel de pixel se ha mostrado estar relacionado de forma estadísticamente significativa con la pendiente, orientación y altitud media del píxel. ABSTRACT This project goes in depth on the estimation of forest attributes by means of LiDAR data in Fuenfria’s Valley (Cercedilla, Madrid). The available information was two LiDAR flights (2002 and 2011) and a forest inventory consisting of 60 plots (2013). First, six different dasometric attributes (volume, basal area, total aboveground biomass, top height, density and quadratic mean diameter) were estimated in 2013 both at a pixel, stand and forest level. The models were developed using multiple linear regression and were good enough to predict these attributes with great accuracy. Second, the measured diameter distribution at each plot was fitted to a simple and a double Weibull distribution and different methods for its estimation were tested. Neither parameter prediction method nor percentile prediction method were able to account for the diameter distribution. Finally, volume and top height growths were estimated comparing 2011 LiDAR flight with 2002 LiDAR flight. Even though the LiDAR technology was not the same and there was just one forest inventory with sample plots, the models properly explain the growth. Besides, growth at each pixel is significantly related to its average slope, orientation and altitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the relationship between animal community dynamics and landscape structure has become a priority for biodiversity conservation. In particular, predicting the effects of habitat destruction that confine species to networks of small patches is an important prerequisite to conservation plan development. Theoretical models that predict the occurrence of species in fragmented landscapes, and relationships between stability and diversity do exist. However, reliable empirical investigations of the dynamics of biodiversity have been prevented by differences in species detection probabilities among landscapes. Using long-term data sampled at a large spatial scale in conjunction with a capture-recapture approach, we developed estimates of parameters of community changes over a 22-year period for forest breeding birds in selected areas of the eastern United States. We show that forest fragmentation was associated not only with a reduced number of forest bird species, but also with increased temporal variability in the number of species. This higher temporal variability was associated with higher local extinction and turnover rates. These results have major conservation implications. Moreover, the approach used provides a practical tool for the study of the dynamics of biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical models suggest that overlapping generations, in combination with a temporally fluctuating environment, may allow the persistence of competitors that otherwise would not coexist. Despite extensive theoretical development, this “storage effect” hypothesis has received little empirical attention. Herein I present the first explicit mathematical analysis of the contribution of the storage effect to the dynamics of competing natural populations. In Oneida Lake, NY, data collected over the past 30 years show a striking negative correlation between the water-column densities of two species of suspension-feeding zooplankton, Daphnia galeata mendotae and Daphnia pulicaria. I have demonstrated competition between these two species and have shown that both possess long-lived eggs that establish overlapping generations. Moreover, recruitment to this long-lived stage varies annually, so that both daphnids have years in which they are favored (for recruitment) relative to their competitor. When the long-term population growth rates are calculated both with and without the effects of a variable environment, I show that D. galeata mendotae clearly cannot persist without the environmental variation and prolonged dormancy (i.e., storage effect) whereas D. pulicaria persists through consistently high per capita recruitment to the long-lived stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficient introduction of somatic mutations in a given gene, at a given time, in a specific cell type will facilitate studies of gene function and the generation of animal models for human diseases. We have shown previously that conditional recombination–excision between two loxP sites can be achieved in mice by using the Cre recombinase fused to a mutated ligand binding domain of the human estrogen receptor (Cre-ERT), which binds tamoxifen but not estrogens. DNA excision was induced in a number of tissues after administration of tamoxifen to transgenic mice expressing Cre-ERT under the control of the cytomegalovirus promoter. However, the efficiency of excision varied between tissues, and the highest level (≈40%) was obtained in the skin. To determine the efficiency of excision mediated by Cre-ERT in a given cell type, we have now crossed Cre-ERT-expressing mice with reporter mice in which expression of Escherichia coli β-galactosidase can be induced through Cre-mediated recombination. The efficiency and kinetics of this recombination were analyzed at the cellular level in the epidermis of 6- to 8-week-old double transgenic mice. We show that site-specific excision occurred within a few days of tamoxifen treatment in essentially all epidermis cells expressing Cre-ERT. These results indicate that cell-specific expression of Cre-ERT in transgenic mice can be used for efficient tamoxifen-dependent, Cre-mediated recombination at loci containing loxP sites to generate site-specific somatic mutations in a spatio-temporally controlled manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

São escassos os estudos que analisam o contínuo temporal dos estados de ânimo ao longo de um período competitivo esportivo. Embora os estados de ânimo pareçam estáveis ao longo do tempo, diferentes estímulos e contextos presentes modificam a intensidade e a valência desses estados. Além disso, há fenômenos psicológicos como decaimento, em que traços de informação perdem sua ativação devido, principalmente, à passagem do tempo e a expectativa, que é a espera pela ocorrência de um evento em um determinado tempo. O objetivo desse estudo foi examinar as alterações dos estados de ânimo em jovens atletas de futebol, separados por posição e função, que ocorreram num período competitivo, em função do decurso temporal. Assim, processos como decaimento dos estados de ânimo e a influência da expectativa pela ocorrência jogo foram analisados, bem como a influência do contexto nas variações dos estados de ânimo dos atletas. Participaram deste estudo 18 jovens atletas (média de 15,4 anos ± 0,266) de um clube de futebol que estava disputando um campeonato estadual. Para o acesso aos estados de ânimo, foi utilizada a versão reduzida da Lista de Estados de Ânimo Presentes (LEAP), juntamente com um formulário de instruções de preenchimento, aplicada minutos antes de alguns treinamentos e jogos. Foram calculados os valores de presença de cada Fator da LEAP em cada evento para cada participante. Os dados foram coletados em três tipos de Eventos: antes do último treino antecedente ao jogo (Treino-Pré), antes do jogo (Pré-jogo) e antes do primeiro treino subsequente ao jogo (Treino-Pós). Os 18 jogadores foram divididos em dois grupos: Ações Defensivas (AD) e Ações Ofensivas (AO). Foram encontrados padrões de alteração dos estados de ânimo, representados pelos Fatores II (Fadiga), VII (Interesse) e XII (Serenidade) da LEAP, em função do decurso temporal, permitindo a análise dos processos de decaimento desses estados de ânimo e a influência da expectativa nessas alterações. Também foi encontrado que alguns estados de ânimo diferiram seus padrões de alteração de acordo com um intervalo temporal (Fatores IV Limerência/Empatia e; VII Interesse), bem como tiveram valores de presença diferentes na comparação entre esses intervalos. Além disso, os Fatores III (Esperança), V (Fisiológico) e XI (Receptividade) apresentaram padrões de alteração em função do decurso temporal em diferentes intervalos temporais. Variáveis contextuais, como o resultado das partidas e a competição esportiva em si, também foram influentes nessas alterações. Fadiga, esperança, empatia, estados ligados à propriocepção, interesse, receptividade e serenidade foram os estados de ânimo presentes durante todo o estudo. Ressalta-se a importância de incluir a temporalidade como variável influente nos modelos de variação de processos neurobiológicos, sobretudo nas investigações acerca de aspectos subjetivos como os estados de ânimo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three sets of laboratory column experimental results concerning the hydrogeochemistry of seawater intrusion have been modelled using two codes: ACUAINTRUSION (Chemical Engineering Department, University of Alicante) and PHREEQC (U.S.G.S.). These reactive models utilise the hydrodynamic parameters determined using the ACUAINTRUSION TRANSPORT software and fit the chloride breakthrough curves perfectly. The ACUAINTRUSION code was improved, and the instabilities were studied relative to the discretisation. The relative square errors were obtained using different combinations of the spatial and temporal steps: the global error for the total experimental data and the partial error for each element. Good simulations for the three experiments were obtained using the ACUAINTRUSION software with slight variations in the selectivity coefficients for both sediments determined in batch experiments with fresh water. The cation exchange parameters included in ACUAINTRUSION are those reported by the Gapon convention with modified exponents for the Ca/Mg exchange. PHREEQC simulations performed using the Gains-Thomas convention were unsatisfactory, with the exchange coefficients from the database of PHREEQC (or range), but those determined with fresh water – natural sediment allowed only an approximation to be obtained. For the treated sediment, the adjusted exchange coefficients were determined to improve the simulation and are vastly different from those from the database of PHREEQC or batch experiment values; however, these values fall in an order similar to the others determined under dynamic conditions. Different cation concentrations were simulated using two different software packages; this disparity could be attributed to the defined selectivity coefficients that affect the gypsum equilibrium. Consequently, different calculated sulphate concentrations are obtained using each type of software; a smaller mismatch was predicted using ACUAINTRUSION. In general, the presented simulations by ACUAINTRUSION and PHREEQC produced similar results, making predictions consistent with the experimental data. However, the simulated results are not identical to the experimental data; sulphate (total S) is overpredicted by both models, most likely due to such factors as the kinetics of gypsum, the possible variations in the exchange coefficients due to salinity and the neglect of other processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of the automatic recognition and classification of temporal expressions and events in human language. Efficacy in these tasks is crucial if the broader task of temporal information processing is to be successfully performed. We analyze whether the application of semantic knowledge to these tasks improves the performance of current approaches. We therefore present and evaluate a data-driven approach as part of a system: TIPSem. Our approach uses lexical semantics and semantic roles as additional information to extend classical approaches which are principally based on morphosyntax. The results obtained for English show that semantic knowledge aids in temporal expression and event recognition, achieving an error reduction of 59% and 21%, while in classification the contribution is limited. From the analysis of the results it may be concluded that the application of semantic knowledge leads to more general models and aids in the recognition of temporal entities that are ambiguous at shallower language analysis levels. We also discovered that lexical semantics and semantic roles have complementary advantages, and that it is useful to combine them. Finally, we carried out the same analysis for Spanish. The results obtained show comparable advantages. This supports the hypothesis that applying the proposed semantic knowledge may be useful for different languages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de mestrado em Matemática Aplicada à Economia e Gestão, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All living organisms require accurate mechanisms to faithfully inherit their genetic material during cell division. The centromere is a unique locus on each chromosome that supports a multiprotein structure called the kinetochore. During mitosis, the kinetochore is responsible for connecting chromosomes to spindle microtubules, allowing faithful segregation of the duplicated genome. In most organisms, centromere position and function is not defined by the local DNA sequence context but rather by an epigenetic chromatin-based mechanism. Centromere protein A (CENP-A) is central to this process, as chromatin assembled from this histone H3 variant is essential for assembly of the centromere complex, as well as for its epigenetic maintenance. As a major determinant of centromere function, CENP-A assembly requires tight control, both in its specificity for the centromere and in timing of assembly. In the last few years, there have been several new insights into the molecular mechanism that allow this process to occur. We will review these here and discuss the general implications of the mechanism of cell cycle coupling of centromere inheritance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The triggering mechanism and the temporal evolution of large flood events, especially of worst-case scenarios, are not yet fully understood. Consequently, the cumulative losses of extreme floods are unknown. To study the link between weather conditions, discharges and flood losses it is necessary to couple atmospheric, hydrological, hydrodynamic and damage models. The objective of the M-AARE project is to test the potentials and opportunities of a model chain that relates atmospheric conditions to flood losses or risks. The M-AARE model chain is a set of coupled models consisting of four main components: the precipitation module, the hydrology module, the hydrodynamic module, and the damage module. The models are coupled in a cascading framework with harmonized time-steps. First exploratory applications show that the one way coupling of the WRF-PREVAH-BASEMENT models has been achieved and provides promising new insights for a better understanding of key aspects in flood risk analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06