940 resultados para spatial and temporal variations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C/m**2/d respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0°C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C/m**2/d, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a result of intensive field activities carried out by several nations over the past 15 years, a set of accumulation measurements for western Dronning Maud Land, Antarctica, was collected, based on firn-core drilling and snow-pit sampling. This new information was supplemented by earlier data taken from the literature, resulting in 111 accumulation values. Using Geographical Information Systems software, a first region-wide mean annual snow-accumulation field was derived. In order to define suitable interpolation criteria, the accumulation records were analyzed with respect to their spatial autocorrelation and statistical properties. The resulting accumulation pattern resembles well known characteristics such as a relatively wet coastal area with a sharp transition to the dry interior, but also reveals complex topographic effects. Furthermore, this work identifies new high-return shallow drilling sites by uncovering areas of insufficient sampling density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program Site 1002 in the Cariaco Basin was drilled in the final two days of Leg 165 with only a short transit remaining to the final port of San Juan, Puerto Rico. Because of severe time constraints, cores from only the first of the three long replicate holes (Hole 1002C) were opened at sea for visual description, and the shipboard sampling was restricted to the biostratigraphic examination of core catchers. The limited sampling and general scarcity of biostratigraphic datums within the late Quaternary interval covered by this greatly expanded hemipelagic sequence resulted in a very poorly defined age model for Site 1002 as reported in the Leg 165 Initial Reports volume of the Proceedings of the Ocean Drilling Program. Here, we present for the first time a new integrated stratigraphy for Site 1002 based on the standard of late Quaternary oxygen-isotope variations linked to a suite of refined biostratigraphic datums. These new data show that the sediment sequence recovered by Leg 165 in the Cariaco Basin is continuous and spans the time interval from 0 to ~580 ka, with a basal age roughly twice as old as initially suspected from the tentative shipboard identification of a single biostratigraphic datum. Lithologic subunits recognized at Site 1002 are here tied into this new stratigraphic framework, and temporal variations in major sediment components are reported. The biogenic carbonate, opal, and organic carbon contents of sediments in the Cariaco Basin tend to be high during interglacials, whereas the terrigenous contents of the sediments increase during glacials. Glacioeustatic variations in sea level are likely to exert a dominant control on these first-order variations in lithology, with glacial surface productivity and the nutrient content of waters in the Cariaco Basin affected by shoaling glacial sill depths, and glacial terrigenous inputs affected by narrowing of the inner shelf and increased proximity of direct riverine sources during sea-level lowstands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because zooplankton feces represent a potentially important transport pathway of surface-derived organic carbon in the ocean, we must understand the patterns of fecal pellet abundance and carbon mobilization over a variety of spatial and temporal scales. To assess depth-specific water column variations of fecal pellets on a seasonal scale, vertical fluxes of zooplankton fecal pellets were quantified and their contribution to mass and particulate carbon were computed during 1990 at 200, 500, 1000, and 2000 m depths in the open northwestern Mediterranean Sea as part of the French-JGOFS DYFAMED Program. Depth-averaged daily fecal pellet flux was temporally variable, ranging from 3.04 * 10**4 pellets m**2/d in May to a low of 6.98 * 10**2 pellets m**2/d in September. The peak flux accounted for 50% of the integrated annual flux of fecal pellets and 62% of pellet carbon during only two months in mid-spring (April and May). Highest numerical fluxes were encountered at 1000 m, suggesting fecal pellet generation well below the euphotic zone. However, there was a trend toward lower pellet carbon with increasing depth, suggesting bacterial degradation or in situ repackaging as pellets sink through the water column. At 500 m, both the lowest pellet numerical abundance and carbon flux were evident during the spring peak. Combined with data indicating that numerical and carbon fluxes are dominated at 500 m by a distinct type of pellet found uniquely at this depth, these trends suggest the presence of an undescribed mid-water macro-zooplankton or micro-nekton community. Fecal pellet carbon flux was highest at 200 m and varied with depth independently of overall particulate carbon, which was greatest at 500 m. Morphologically distinct types of pellets dominated the numerical and carbon fluxes. Small elliptical and spherical pellets accounted for 88% of the numerical flux, while larger cylindrical pellets, although relatively rare (<10%), accounted for almost 40% of the overall pellet carbon flux. Cylindrical pellets dominated the pellet carbon flux at all depths except 500 m, where a large subtype of elliptical pellet, found only at that depth, was responsible for the majority of pellet carbon flux. Overall during 1990, fecal pellets were responsible for a depth-integrated annual average flux of 1.03 mgC/m**2/d, representing 18% of the total carbon flux. The proportion of vertical carbon flux attributed to fecal pellets varied from 3 to 35%, with higher values occurring during periods when the water column was vertically mixed. Especially during these times, fecal pellets are a critical conveyor of carbon to the deep sea in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During summer 2008, as part of the Circumpolar Flaw Lead system study, we measured phytoplankton photosynthetic parameters to understand regional patterns in primary productivity, including the degree and timescale of photoacclimation and how variability in environmental conditions influences this response. Photosynthesis-irradiance measurements were taken at 15 sites primarily from the depth of the subsurface chlorophyll a (Chl a) maximum (SCM) within the Beaufort Sea flaw lead polynya. The physiological response of phytoplankton to a range of light levels was used to assess maximum rates of carbon (C) fixation (P*m), photosynthetic efficiency (alpha*), photoacclimation (Ek), and photoinhibition (beta*). SCM samples taken along a transect from under ice into open water exhibited a >3-fold increase in alpha* and P*m, showing these parameters can vary substantially over relatively small spatial scales, primarily in response to changes in the ambient light field. Algae were able to maintain relatively high rates of C fixation despite low light at the SCM, particularly in the large (>5 µm) size fraction at open water sites. This may substantially impact biogenic C drawdown if species composition shifts in response to future climate change. Our results suggest that phytoplankton in this region are well acclimated to existing environmental conditions, including sea ice cover, low light, and nutrient pulses. Furthermore, this photoacclimatory response can be rapid and keep pace with a developing SCM, as phytoplankton maintain photosynthetic rates and efficiencies in a narrow ''shade-acclimated'' range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial and temporal patterns in test size and shape (test conicity and spiral roundness) and absolute abundance (accumulation rate) of the planktonic foraminifer Contusotruncana contusa were studied in the South Atlantic Ocean (DSDP sites 356, 516, 525 and 527) during an interval corresponding to the last 800 kyr of the Cretaceous. The variation in absolute abundance of C. contusa was characterised by alternating periods of high and low abundance; some of these periods were traceable across the entire mid-latitude South Atlantic Ocean. While the mean spiral roundness did not show any interpretable patterns, a sudden increase of the mean test size and mean test conicity occurred between 65.3 and 65.2 Ma (based on linear interpolation within the Cretaceous part of Subchron C29R) at all sites studied, indicating a poleward migration followed by rapid withdrawal of the low-latitude C. contusa morphotypes from the mid-latitude South Atlantic Ocean. We suggest that this event was caused by a short period of surface-water warming in the southern mid-latitudes corresponding to the brief high-latitude warming event and associated faunal migrations in the Boreal and Austral realms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium carbonate precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice, although it is hypothesized that high quantities of dissolved organic matter and/or phosphate (common in sea ice) may inhibit its formation. In this quantitative study of hydrous calcium carbonate as ikaite, sea ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during two expeditions, one in the East Antarctic sector and the other off Terre Adélie. Samples were analysed for CaCO3, salinity, dissolved organic carbon/nitrogen, inorganic phosphate, and total alkalinity. No relationship between these parameters and CaCO3 precipitation was evident. Ikaite was found mostly in the uppermost layers of sea ice with maximum concentrations of up to 126 mg ikaite per litre melted sea ice being measured, although both the temporal and horizontal spatial distributions of ikaite were highly heterogeneous. The precipitate was also found in the snow on top of the sea ice at some of the sampling locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Total organic carbon (TOC) was analyzed on four transects along 140°W in 1992 using a high temperature combustion/discrete injection (HTC/DI) analyzer. For two of the transects, the analyses were conducted on-board ship. Mixed-layer concentrations of organic carbon varied from about 80 µM C at either end of the transect (12°N and 12°S) to about 60 µM C at the equator. Total organic carbon concentrations decreased rapidly below the mixed-layer to about 38-40 µM C at 1000 m across the transect. Little variation was observed below this depth; deep water concentrations below 2000 m were virtually monotonic at about 36 µM C. Repeat measurements made on subsequent cruises consistently found the same concentrations at 1000 m or deeper, but substantial variations were observed in the mixed-layer and the upper water column above 400 m depth. Linear mixing models of total organic carbon versus sigmaT exhibited zones of organic carbon formation and consumption. TOC was found to be inversely correlated with apparent oxygen utilization (AOU) in the region between the mixed-layer and the oxygen minimum. In the mixed-layer, TOC concentrations varied seasonally. Part of the variations in TOC at the equator was driven by changes in the upwelling rate in response to variations in physical forcing related to an El Niño and to the passage of tropical instability waves. TOC export fluxes, calculated from simple box models, averaged 8±4 mmol C/m**2/day at the equator and also varied seasonally. These export fluxes account for 50-75% of the total carbon deficit and are consistent with other estimates and model predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aimed at investigating effects of three differently acting biocides; the insecticide esfenvalerate, the fungicide picoxystrobin and the bactericide triclosan, applied individually and as a mixture, on an earthworm community in the field. A concentration-response design was chosen and results were analyzed using univariate and multivariate approaches. Effects on juvenile proportions were less pronounced and more variable than effects on abundance, but effects in general were species- and chemical-specific, and temporal variations distinct. Esfenvalerate and picoxystrobin appeared to elicit stronger effects than triclosan at laboratory-based ECx values, which is in accordance with our previous laboratory study on Eisenia fetida. The mixture affected abundance and juvenile proportions, but the latter only at high mixture concentrations. Esfenvalerate and picoxystrobin appeared to be the main drivers for the mixture's toxicity. Species-specific toxicity patterns question the reliability of mixture toxicity predictions derived on E. fetida for field earthworms. Biocide concentrations equaling EC50s (reproduction) for E. fetida provoked effects on the field earthworms mainly exceeding 50%, indicating effect intensification from the laboratory to field as well as the influence of indirect effects produced by species interactions. The differing results of the present field study and the previous laboratory study imply that lower- and higher-tier studies may not be mutually exclusive, but to be used in complementary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial and temporal patterns of fog and low clouds along the South-Western African coast are characterized based on an evaluation of Meteosat SEVIRI satellite data. A technique for the detection of fog/low clouds in the region is introduced, and validated using 1 year of CALIOP cloud lidar products, showing reliable performance. The frequency of fog and low cloud in the study area is analyzed by systematic application of the technique to all available Meteosat SEVIRI scenes from 2004 to 2009, for 7:00 UTC and 14:00 UTC. The highest frequencies are encountered in the area around Walvis Bay, with a peak in the summer months. Fog and low clouds clear by 14:00 UTC almost everywhere over land.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siwalik paleosol and Bengal Fan sediment samples were analyzed for the abundance and isotopic composition of n-alkanes in order to test for molecular evidence of the expansion of C4 grasslands on the Indian subcontinent. The carbon isotopic compositions of high-molecular-weight alkanes in both the ancient soils and sediments record a shift from low d13C values (ca. -30 per mil) to higher values (ca. -22 per mil) prior to 6 Ma. This shift is similar in magnitude to that recorded by paleosol carbonate and fossil teeth, and is consistent with a relatively rapid transition from dominantly C3 vegetation to an ecosystem dominated by C4 plants typical of semi-arid grasslands. The n-alkane values from our paleosol samples indicate that the isotopic change began as early as 9 Ma, reflecting either a growing contribution of C4 plants to a dominantly C3 biomass or a decrease in water availability to C3 plants. Molecular and isotopic analyses of other compounds, including n-alcohols and low-molecular weight n-alkanes indicate paleosol organic matter contains contributions from a mixture of sources, including vascular plants, algae and/or cyanobacteria and microorganisms. A range of inputs is likewise reflected in the isotopic composition of the total organic carbon from these samples. In addition, the n-alkanes from two samples show little evidence for pedegenic inputs and we suggest the compounds were derived instead from the paleosol's parent materials. We suggest the record of vegetation in ancient terrestrial ecosystems is better reconstructed using isotopic signatures of molecular markers, rather than bulk organic carbon. This approach provides a means of expanding the spatial and temporal records of C4 plant biomass which will help to resolve possible tectonic, climatic or biological controls on the rise of this important component of the terrestrial biosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although sea-ice extent in the Bellingshausen-Amundsen (BA) seas sector of the Antarctic has shown significant decline over several decades, there is not enough data to draw any conclusion on sea-ice thickness and its change for the BA sector, or for the entire Southern Ocean. This paper presents our results of snow and ice thickness distributions from the SIMBA 2007 experiment in the Bellingshausen Sea, using four different methods (ASPeCt ship observations, downward-looking camera imaging, ship-based electromagnetic induction (EM) sounding, and in situ measurements using ice drills). A snow freeboard and ice thickness model generated from in situ measurements was then applied to contemporaneous ICESat (satellite laser altimetry) measured freeboard to derive ice thickness at the ICESat footprint scale. Errors from in situ measurements and from ICESat freeboard estimations were incorporated into the model, so a thorough evaluation of the model and uncertainty of the ice thickness estimation from ICESat are possible. Our results indicate that ICESat derived snow freeboard and ice thickness distributions (asymmetrical unimodal tailing to right) for first-year ice (0.29 ± 0.14 m for mean snow freeboard and 1.06 ± 0.40 m for mean ice thickness), multi-year ice (0.48 ± 0.26 and 1.59 ± 0.75 m, respectively), and all ice together (0.42 ± 0.24 and 1.38 ± 0.70 m, respectively) for the study area seem reasonable compared with those values from the in situ measurements, ASPeCt observations, and EM measurements. The EM measurements can act as an appropriate supplement for ASPeCt observations taken hourly from the ship's bridge and provide reasonable ice and snow distributions under homogeneous ice conditions. Our proposed approaches: (1) of using empirical equations relating snow freeboard to ice thickness based on in situ measurements and (2) of using isostatic equations that replace snow depth with snow freeboard (or empirical equations that convert freeboard to snow depth), are efficient and important ways to derive ice thickness from ICESat altimetry at the footprint scale for Antarctic sea ice. Spatial and temporal snow and ice thickness from satellite altimetry for the BA sector and for the entire Southern Ocean is therefore possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of a close relationship between detrital flux variations and magnetic susceptibility (MS) flux (MS cm**3 of bulk sediment multiplied by the linear sedimentation rate) variations in the southeast Indian basin of the southern ocean, MS flux profiles have been used to examine the spatial and temporal detrital flux changes in this basin during the last climatic cycle. Results indicate a general increase in detrital material input during the coldest periods, suggesting a widespread phenomenon, at least on the basin scale. Mineralogical data, geochemical data, and 87Sr/86Sr isotopic ratios have been used to determine the origin and transport mechanisms responsible for increased detrital flux during glacial periods. Mineralogical and geochemical data show that these glacial 'highs' are due to increases in both Kerguelen-Crozet volcanic and Antarctic detrital inputs. The 87Sr/86Sr isotopic composition of the >45-µm fraction indicates that the Kerguelen-Crozet province contributes to at least 50% of the coarse particule input to the west. This contribution decreases eastward to reach less than 10%. These tracers clearly indicate that the Crozet-Kerguelen province was a major source region of detrital in the western part of the basin during glacial times. In contrast, material of Antarctic origin is well represented in the whole basin (fine and coarse fractions). Because of the minor amount of coarse particles in the sediments, volcanic particles from Kerguelen and crustal particles from Antarctica have most probably been transported by the Antarctic bottom water current and/or the Circumpolar deepwater current during glacial periods as is the case today. Nevertheless, the presence of coarse particles even in low amount suggests also a transport by ice rafting (sea-ice and icebergs), originated from both Kerguelen and Antarctic sources. However, the relative importance of both hydrographic and ice-rafting modes of transport cannot be identified accurately with our data. During low sea level stands (glacial maximum periods), increasing instability and erosion of the continental platform and shallow plateaus could have resulted in a more efficient transfer of crustal and volcano-detrital material to the Southeast Indian basin. At the same time, extension of the grounded ice shelves over the continental margins and increase in the erosion rate of the Antarctic ice sheet could have induced a greater input of ice rafted detritus (IRD) to southern ocean basins. Enhancement of the circumpolar deepwater current strength might have also carried a more important flux of detrital material from Kerguelen. However, an increase in the bottom water flow is not necessarily required.