987 resultados para slow-light
Resumo:
Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was also employed to follow the amorphous-crystalline (a-c) transition of the Si domains contained in the Si:O films. The optical absorption and the electrical transport of Si:O films can be continuously and independently modulated by acting on different parameters. The light absorption increases (by one decade) with the Si content in the 43-100 at. % range, determining an optical band gap which can be continuously modulated into the 2.6-1.6 eV range, respectively. The a-c phase transition in Si:O films, causing a significant reduction in the absorption coefficient, occurs at increasing temperatures (from 600 to 1100 °C) as the Si content decreases. The electrical resistivity of Si:O films can be varied among five decades, being essentially dominated by the number of Si grains and by the doping. Si:O alloys with Si content in the 60-90 at. % range (named oxygen rich silicon films), are proved to join an appealing optical gap with a viable conductivity, being a good candidate for increasing the conversion efficiency of thin-film photovoltaic cell. © 2010 American Institute of Physics.
Resumo:
We investigated the properties of light emitting devices whose active layer consists of Er-doped Si nanoclusters (nc) generated by thermal annealing of Er-doped SiOx layers prepared by magnetron cosputtering. Differently from a widely used technique such as plasma enhanced chemical vapor deposition, sputtering allows to synthesize Er-doped Si nc embedded in an almost stoichiometric oxide matrix, so as to deeply influence the electroluminescence properties of the devices. Relevant results include the need for an unexpected low Si excess for optimizing the device efficiency and, above all, the strong reduction of the influence of Auger de-excitation, which represents the main nonradiative path which limits the performances of such devices and their application in silicon nanophotonics. © 2010 American Institute of Physics.
Resumo:
The photon absorption in Si quantum dots (QDs) embedded in SiO2 has been systematically investigated by varying several parameters of the QD synthesis. Plasma-enhanced chemical vapor deposition (PECVD) or magnetron cosputtering (MS) have been used to deposit, upon quartz substrates, single layer, or multilayer structures of Si-rich- SiO2 (SRO) with different Si content (43-46 at. %). SRO samples have been annealed for 1 h in the 450-1250 °C range and characterized by optical absorption measurements, photoluminescence analysis, Rutherford backscattering spectrometry and x-ray Photoelectron Spectroscopy. After annealing up to 900 °C SRO films grown by MS show a higher absorption coefficient and a lower optical bandgap (∼2.0 eV) in comparison with that of PECVD samples, due to the lower density of Si-Si bonds and to the presence of nitrogen in PECVD materials. By increasing the Si content a reduction in the optical bandgap has been recorded, pointing out the role of Si-Si bonds density in the absorption process in small amorphous Si QDs. Both the photon absorption probability and energy threshold in amorphous Si QDs are higher than in bulk amorphous Si, evidencing a quantum confinement effect. For temperatures higher than 900 °C both the materials show an increase in the optical bandgap due to the amorphous-crystalline transition of the Si QDs. Fixed the SRO stoichiometry, no difference in the optical bandgap trend of multilayer or single layer structures is evidenced. These data can be profitably used to better implement Si QDs for future PV technologies. © 2009 American Institute of Physics.
Resumo:
In this work, we present some approaches recently developed for enhancing light emission from Er-based materials and devices. We have investigated the luminescence quenching processes limiting quantum efficiency in light-emitting devices based on Si nanoclusters (Si nc) or Er-doped Si nc. It is found that carrier injection, while needed to excite Si nc or Er ions through electron-hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. A strong light confinement and enhancement of Er emission at 1.54 μm in planar silicon-on-insulator waveguides containing a thin layer (slot) of SiO2 with Er-doped Si nc at the center of the Si core has been obtained. By measuring the guided photoluminescence from the cleaved edge of the sample, we have observed a more than fivefold enhancement of emission for the transverse magnetic mode over the transverse electric one at room temperature. Slot waveguides have also been integrated with a photonic crystal (PhC), consisting of a triangular lattice of holes. An enhancement by more than two orders of magnitude of the Er near-normal emission is observed when the transition is in resonance with an appropriate mode of the PhC slab. Finally, in order to increase the concentration of excitable Er ions, a completely different approach, based on Er disilicate thin films, has been explored. Under proper annealing conditions crystalline and chemically stable Er2Si2O7 films are obtained; these films exhibit a strong luminescence at 1.54 μm owing to the efficient reduction of the defect density. © 2008 Elsevier B.V. All rights reserved.
Resumo:
We present experimental measurements on Silicon-on-insulator (SOI) photonic crystal slabs with an active layer containing Er3+ ions-doped Silicon nanoclusters (Si-nc), showing strong enhancement of 1.54 μm emission at room temperature. We provide a systematic theoretical analysis to interpret such results. In order to get further insight, we discuss experimental data on the guided luminescence of unpatterned SOI planar slot waveguides, which show enhanced light emission in transverse-magnetic (TM) modes over transverse-electric (TE) ones. ©2007 IEEE.
Resumo:
The brain extracts useful features from a maelstrom of sensory information, and a fundamental goal of theoretical neuroscience is to work out how it does so. One proposed feature extraction strategy is motivated by the observation that the meaning of sensory data, such as the identity of a moving visual object, is often more persistent than the activation of any single sensory receptor. This notion is embodied in the slow feature analysis (SFA) algorithm, which uses “slowness” as an heuristic by which to extract semantic information from multi-dimensional time-series. Here, we develop a probabilistic interpretation of this algorithm showing that inference and learning in the limiting case of a suitable probabilistic model yield exactly the results of SFA. Similar equivalences have proved useful in interpreting and extending comparable algorithms such as independent component analysis. For SFA, we use the equivalent probabilistic model as a conceptual spring-board, with which to motivate several novel extensions to the algorithm.
Resumo:
Cyanobacteria perform photosynthesis and respiration in the thylakoid membrane, suggesting that the two processes are interlinked. However, the role of the respiratory electron transfer chain under natural environmental conditions has not been established. Through targeted gene disruption, mutants of Synechocystis sp. PCC 6803 were generated that lacked combinations of the three terminal oxidases: the thylakoid membrane-localized cytochrome c oxidase (COX) and quinol oxidase (Cyd) and the cytoplasmic membrane-localized alternative respiratory terminal oxidase. All strains demonstrated similar growth under continuous moderate or high light or 12-h moderate-light/dark square-wave cycles. However, under 12-h high-light/dark square-wave cycles, the COX/Cyd mutant displayed impaired growth and was completely photobleached after approximately 2 d. In contrast, use of sinusoidal light/dark cycles to simulate natural diurnal conditions resulted in little photobleaching, although growth was slower. Under high-light/dark square-wave cycles, the COX/Cyd mutant suffered a significant loss of photosynthetic efficiency during dark periods, a greater level of oxidative stress, and reduced glycogen degradation compared with the wild type. The mutant was susceptible to photoinhibition under pulsing but not constant light. These findings confirm a role for thylakoid-localized terminal oxidases in efficient dark respiration, reduction of oxidative stress, and accommodation of sudden light changes, demonstrating the strong selective pressure to maintain linked photosynthetic and respiratory electron chains within the thylakoid membrane. To our knowledge, this study is the first to report a phenotypic difference in growth between terminal oxidase mutants and wild-type cells and highlights the need to examine mutant phenotypes under a range of conditions.
Resumo:
This paper will review the advances which have been made in both electrically and optically addressed spatial light modulators and coding algorithms, which bring the realization of advanced optical systems such as 3D display closer. © OSA 2012.