939 resultados para single-phase inverters


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this phase II study was to investigate the efficacy and tolerability of liarozole, a novel benzimidazole derivative, in non-small cell lung cancer (NSCLC). Liarozole 300 mg twice daily orally was evaluated in 14 patients with stage IIIB and IV NSCLC. 8 patients had received prior treatment with chemotherapy and/or radiotheraphy. WHO toxocity grading and response criteria were used. Liarozole was well tolerated. Grade 2 toxicities included alopecia (1 patient), dermatological toxicity (5 patients), dry mouth (2 patients) and nausea and vomiting (2 patients). Leukocytosis was seen in 5 patients, including 2 cases with an elevated white cell count pretreatment. Liarozole was discontinued in 1 patient who developed intolerable progressive pruritis associated with an erythematous rash. No objective tumour response was seen, all 14 patients developing progressive disease with 4 months of commencing treatment. Liarozole was well tolerated but was ineffective as single as single agent therapy in the management of NSCLC. The side-effect profile was compatible with inhibition of retinoic acid degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural investigations of large biomolecules in the gas phase are challenging. Herein, it is reported that action spectroscopy taking advantage of facile carbon-iodine bond dissociation can be used to examine the structures of large molecules, including whole proteins. Iodotyrosine serves as the active chromophore, which yields distinctive spectra depending on the solvation of the side chain by the remainder of the molecule. Isolation of the chromophore yields a double featured peak at ∼290 nm, which becomes a single peak with increasing solvation. Deprotonation of the side chain also leads to reduced apparent intensity and broadening of the action spectrum. The method can be successfully applied to both negatively and positively charged ions in various charge states, although electron detachment becomes a competitive channel for multiply charged anions. In all other cases, loss of iodine is by far the dominant channel which leads to high sensitivity and simple data analysis. The action spectra for iodotyrosine, the iodinated peptides KGYDAKA, DAYLDAG, and the small protein ubiquitin are reported in various charge states. © 2012 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents new five-level current-source inverters (CSIs) with voltage/current buck-boost capability, unlike existing five-level CSIs where only voltage-boost operation is supported. The proposed inverters attain self-inductive-current-balancing per switching cycle at their dc front ends without having to include additional balancing hardware or complex control manipulation. The inverters can conveniently be controlled by using the well-established phase-shifted carrier modulation scheme with only two additional linear references and a mapping logic table needed. Existing modulators can therefore be conveniently retrofitted for controlling the presented inverters. By appropriately coordinating the inverter gating signals, their implementations can be realized by using the least number of components without degrading performance. These enhanced features of the inverters have already been verified in simulation and experimentally using a scaled-down laboratory platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diverse morphologies of multidimensional hierarchical single-crystalline ZnO nanoarchitectures including nanoflowers, nanobelts, and nanowires are obtained by use of a simple thermal evaporation and vapour-phase transport deposition technique by placing Au-coated silicon substrates in different positions inside a furnace at process temperatures as low as 550 °C. The nucleation and growth of ZnO nanostructures are governed by the vapour–solid mechanism, as opposed to the commonly reported vapour–liquid–solid mechanism, when gold is used in the process. The morphological, structural, compositional and optical properties of the synthesized ZnO nanostructures can be effectively tailored by means of the experimental parameters, and these properties are closely related to the local growth temperature and gas-phase supersaturation at the sample position. In particular, room-temperature photoluminescence measurements reveal an intense near-band-edge ultraviolet emission at about 386 nm for nanobelts and nanoflowers, which suggests that these nanostructures are of sufficient quality for applications in, for example, optoelectronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many properties of single-walled carbon nanotube (SWCNT) arrays are determined by the size and surface coverage of the metal catalyst islands from which they are nucleated. Methods using thermal fragmentation of continuous metal films frequently fail to produce size-uniform islands. Hybrid numerical simulations are used to propose a new approach to controlled self-assembly of Ni islands of the required size and surface coverage using tailored gas-phase generated nanocluster fluxes and adjusted surface temperatures. It is shown that a maximum surface coverage of 0.359 by 0.96-1.02 nm Ni catalyst islands can be achieved at a low surface temperature of 500 K. Optimized growth of Ni catalyst islands can lead to fabrication of size-uniform SWCNT arrays, suitable for numerous nanoelectronic applications. This approach is deterministic and is applicable to a range of nanoassemblies where high surface coverage and island size uniformity are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This contribution is focused on plasma-enhanced chemical vapor deposition systems and their unique features that make them particularly attractive for nanofabrication of flat panel display microemitter arrays based on ordered patterns of single-crystalline carbon nanotip structures. The fundamentals of the plasma-based nanofabrication of carbon nanotips and some other important nanofilms and nanostructures are examined. Specific features, challenges, and potential benefits of using the plasma-based systems for relevant nanofabrication processes are analyzed within the framework of the "plasma-building unit" approach that builds up on extensive experimental data on plasma diagnostics and nanofilm/nanostructure characterization, and numerical simulation of the species composition in the ionized gas phase (multicomponent fluid models), ion dynamics and interaction with ordered carbon nanotip patterns, and ab initio computations of chemical structure of single crystalline carbon nanotips. This generic approach is also applicable for nanoscale assembly of various carbon nanostructures, semiconductor quantum dot structures, and nano-crystalline bioceramics. Special attention is paid to most efficient control strategies of the main plasma-generated building units both in the ionized gas phase and on nanostructured deposition surfaces. The issues of tailoring the reactive plasma environments and development of versatile plasma nanofabrication facilities are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, designed topologies for DC-AC inversion with both voltage-buck and boost capabilities are mainly focused on two-level circuitries with extensions to three-level possibilities left nearly unexplored. Contributing to this area of research, this paper presents the design of a number of viable buck-boost three-level inverters that can also support bidirectional power conversion. The proposed front-end circuitry is developed from the Cuk-derived buck-boost two-level inverter, and by using the "alternative phase opposition disposition" (APOD) modulation scheme, the buck-boost three-level inverters can perform distinct five-level line voltage and three-level phase voltage switching by simply controlling the active switches located in the designed voltage boost section of the circuits. As a cost saving option, one active switch can further be removed from the voltage-boost section of the circuits by simply re-routing the gating commands of the remaining switches without influencing the ac output voltage amplitude. To verify the validity of the proposed inverters, Matlab/PLECS simulations were performed before a laboratory prototype was implemented for experimental testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, designed topologies for DC-AC inversion with both voltage buck and boost capabilities are mainly focused on two-level circuitries with extensions to three-level possibilities left nearly unexplored. Contributing to this area of research, this paper presents the design of a number of viable buck-boost three-level inverters that can also support bidirectional power conversion. The proposed front-end circuitry is developed from the Cuk-derived buck-boost two-level inverter, and by using the ldquoalternative phase opposition dispositionrdquo modulation scheme, the buck-boost three-level inverters can perform distinct five-level line voltage and three-level phase voltage switching by simply controlling the active switches located in the designed voltage boost section of the circuits. As a cost saving option, one active switch can further be removed from the voltage boost section of the circuits by simply rerouting the gating commands of the remaining switches without influencing the AC output voltage amplitude. To verify the validity of the proposed inverters, MATLAB/PLECS simulations were performed before a laboratory prototype was implemented for experimental testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates and proposes various compensation methods for three-level Z-source inverters under semiconductor-failure conditions. Unlike the fault-tolerant techniques used in traditional three-level inverters, where either an extra phase-leg or collective switching states are used, the proposed methods for three-level Z-source inverters simply reconfigure their relevant gating signals so as to ride-through the failed semiconductor conditions smoothly without any significant decrease in their ac-output quality and amplitude. These features are partly attributed to the inherent boost characteristics of a Z-source inverter, in addition to its usual voltage-buck operation. By focusing on specific types of three-level Z-source inverters, it can also be shown that, for the dual Z-source inverters, a unique feature accompanying it is its extra ability to force common-mode voltage to zero even under semiconductor-failure conditions. For verifying these described performance features, PLECS simulation and experimental testing were performed with some results captured and shown in a later section for visual confirmation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A monolithic stationary phase was prepared via free radical co-polymerization of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with pore diameter tailored specifically for plasmid binding, retention and elution. The polymer was functionalized. with 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) for anion-exchange purification of plasmid DNA (pDNA) from clarified lysate obtained from E. coli DH5α-pUC19 culture in a ribonuclease/ protease-free environment. Characterization of the monolithic resin showed a porous material, with 68% of the pores existing in the matrix having diameters above 300 nm. The final product isolated from a single-stage 5 min anion-exchange purification was a pure and homogeneous supercoiled (SC) pDNA with no gDNA, RNA and protein contamination as confirmed by ethidium bromide agarose gel electrophoresis (EtBr-AGE), enzyme restriction analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This non-toxic technique is cGMP compatible and highly scalable for production of pDNA on a commercial level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Besides the elastic stiffness, the relaxation behavior of single living cells is also of interest of various researchers when studying cell mechanics. It is hypothesized that the relaxation response of the cells is governed by both intrinsic viscoelasticity of the solid phase and fluid-solid interactions mechanisms. There are a number of mechanical models have been developed to investigate the relaxation behavior of single cells. However, there is lack of model enable to accurately capture both of the mechanisms. Therefore, in this study, the porohyperelastic (PHE) model, which is an extension of the consolidation theory, combined with inverse Finite Element Analysis (FEA) technique was used at the first time to investigate the relaxation response of living chondrocytes. This model was also utilized to study the dependence of relaxation behavior of the cells on strain-rates. The stress-relaxation experiments under the various strain-rates were conducted with the Atomic Force Microscopy (AFM). The results have demonstrated that the PHE model could effectively capture the stress-relaxation behavior of the living chondrocytes, especially at intermediate to high strain-rates. Although this model gave some errors at lower strain-rates, its performance was acceptable. Therefore, the PHE model is properly a promising model for single cell mechanics studies. Moreover, it has been found that the hydraulic permeability of living chondrocytes reduced with decreasing of strain-rates. It might be due to the intracellular fluid volume fraction and the fluid pore pressure gradients of chondrocytes were higher when higher strain-rates applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Brivanib, an oral, multi-targeted tyrosine kinase inhibitor with activity against vascular endothelial growth factor (VEGF) and fibroblast growth factor receptor (FGFR) was investigated as a single agent in a phase II trial to assess the activity and tolerability in recurrent or persistent endometrial cancer (EMC). PATIENTS AND METHODS Eligible patients had persistent or recurrent EMC after receiving one to two prior cytotoxic regimens, measurable disease, and performance status of ≤2. Treatment consisted of brivanib 800 mg orally every day until disease progression or prohibitive toxicity. Primary endpoints were progression-free survival (PFS) at six months and objective tumor response. Expression of multiple angiogenic proteins and FGFR2 mutation status was assessed. RESULTS Forty-five patients were enrolled. Forty-three patients were eligible and evaluable. Median age was 64 years. Twenty-four patients (55.8%) received prior radiation. Median number of cycles was two (range 1-24). No GI perforations but one rectal fistula were seen. Nine patients had grade 3 hypertension, with one experiencing grade 4 confusion. Eight patients (18.6%; 90% CI 9.6%-31.7%) had responses (one CR and seven PRs), and 13 patients (30.2%; 90% CI 18.9%-43.9%) were PFS at six months. Median PFS and overall survival (OS) were 3.3 and 10.7 months, respectively. When modeled jointly, VEGF and angiopoietin-2 expression may diametrically predict PFS. Estrogen receptor-α (ER) expression was positively correlated with OS. CONCLUSION Brivanib is reasonably well tolerated and worthy of further investigation based on PFS at six months in recurrent or persistent EMC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the objectives of this study was to evaluate soil testing equipment based on its capability of measuring in-place stiffness or modulus values. As design criteria transition from empirical to mechanistic-empirical, soil test methods and equipment that measure properties such as stiffness and modulus and how they relate to Florida materials are needed. Requirements for the selected equipment are that they be portable, cost effective, reliable, a ccurate, and repeatable. A second objective is that the selected equipment measures soil properties without the use of nuclear materials.The current device used to measure soil compaction is the nuclear density gauge (NDG). Equipment evaluated in this research included lightweight deflectometers (LWD) from different manufacturers, a dynamic cone penetrometer (DCP), a GeoGauge, a Clegg impact soil tester (CIST), a Briaud compaction device (BCD), and a seismic pavement analyzer (SPA). Evaluations were conducted over ranges of measured densities and moistures.Testing (Phases I and II) was conducted in a test box and test pits. Phase III testing was conducted on materials found on five construction projects located in the Jacksonville, Florida, area. Phase I analyses determined that the GeoGauge had the lowest overall coefficient of variance (COV). In ascending order of COV were the accelerometer-type LWD, the geophone-type LWD, the DCP, the BCD, and the SPA which had the highest overall COV. As a result, the BCD and the SPA were excluded from Phase II testing.In Phase II, measurements obtained from the selected equipment were compared to the modulus values obtained by the static plate load test (PLT), the resilient modulus (MR) from laboratory testing, and the NDG measurements. To minimize soil and moisture content variability, the single spot testing sequence was developed. At each location, test results obtained from the portable equipment under evaluation were compared to the values from adjacent NDG, PLT, and laboratory MR measurements. Correlations were developed through statistical analysis. Target values were developed for various soils for verification on similar soils that were field tested in Phase III. The single spot testing sequence also was employed in Phase III, field testing performed on A-3 and A-2-4 embankments, limerock-stabilized subgrade, limerock base, and graded aggregate base found on Florida Department of Transportation construction projects. The Phase II and Phase III results provided potential trend information for future research—specifically, data collection for in-depth statistical analysis for correlations with the laboratory MR for specific soil types under specific moisture conditions. With the collection of enough data, stronger relationships could be expected between measurements from the portable equipment and the MR values. Based on the statistical analyses and the experience gained from extensive use of the equipment, the combination of the DCP and the LWD was selected for in-place soil testing for compaction control acceptance. Test methods and developmental specifications were written for the DCP and the LWD. The developmental specifications include target values for the compaction control of embankment, subgrade, and base materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase transition of single layer molybdenum disulphide (MoS2) from semi-conducting 2H to metallic 1T and then to 1T' phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS2 monolayer. The thermodynamic stability of 1T-MoS2 increases with the negative charge state, comparing with the 2H-MoS2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 eV to 0.27 eV when 4 e- are injected per MoS2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T' phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T'-MoS2 structure hydrogen coverage shows comparable hydrogen evolution reaction activity to the 2H-MoS2 structure. If the charge transfer kinetics is taken into account, the catalytic activity of 1T'-MoS2 is superior to that of 2H-MoS2. Our finding provides a possible novel method for phase transition of MoS2, and enriches understanding of the catalytic properties of MoS2 for HER.