830 resultados para silicone elastomer
Resumo:
A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity of the sensor is found to be 98 pm/cm of water, enhanced by more than a factor of 9 when compared to an equivalent sensor based on a silica fiber around 1550 nm. The temperature sensitivity is studied and a multi-sensor arrangement proposed, which has the potential to provide level readings independent of temperature and the liquid density.
Resumo:
The year so far has been a slow start for many businesses, but at least we have not seen the collapse of as many businesses that we were seeing around two years ago. We are, however, still well and truly in the midst of a global recession. Interest rates are still at an all time low, UK house prices seem to be showing little signs of increase (except in London where everyone still seems to want to live!) and for the ardent shopper there are bargains to be had everywhere. It seems strange that prices on the high street do not seem to have increased in over ten years. Mobile phones, DVD players even furniture seems to be cheaper than they used to be. Whist much of this is down to cheaper manufacturing and the rest could probably be explained by competition within the market place. Does this mean that quality suffered too? Now that we live in a world when if a television is not working it is thrown away and replaced. There was a time when you would take it to some odd looking man that your father would know who could fix it for you. (I remember our local television fix-it man, with his thick rimmed bifocal spectacles and a poor comb-over; he had cardboard boxes full of resistors and electrical wires on the floor of his front room that smelt of soldering irons!) Is this consumerism at an extreme or has this move to disposability made us a better society? Before you think these are just ramblings there is a point to this. According to latest global figures of contact lens sales the vast majority of contact lenses fitted around the world are daily, fortnightly or monthly disposable hydrogel lenses. Certainly in the UK over 90% of lenses are disposable (with daily disposables being the most popular, having a market share of over 50%). This begs the question – is this a good thing? Maybe more importantly, do our patients benefit? I think it is worth reminding ourselves why we went down the disposability route with contact lenses in the first place, and unlike electrical goods it was not just so we did not have to take them for repair! There are the obvious advantages of overcoming problems of breakage and tearing of lenses and the lens deterioration with age. The lenses are less likely to be contaminated and the disinfection is either easier or not required at all (in the case of daily disposable lenses). Probably the landmark paper in the field was the work more commonly known as the ‘Gothenburg Study’. The paper, entitled ‘Strategies for minimizing the Ocular Effects of Extended Contact Lens Wear’ published in the American Journal of Optometry in 1987 (volume 64, pages 781-789) by Holden, B.A., Swarbrick, H.A., Sweeney, D.F., Ho, A., Efron, N., Vannas, A., Nilsson, K.T. They suggested that contact lens induced ocular effects were minimised by: •More frequently removed contact lenses •More regularly replaced contact lenses •A lens that was more mobile on the eye (to allow better removal of debris) •Better flow of oxygen through the lens All of these issues seem to be solved with disposability, except the oxygen issue which has been solved with the advent of silicone hydrogel materials. Newer issues have arisen and most can be solved in practice by the eye care practitioner. The emphasis now seems to be on making lenses more comfortable. The problems of contact lens related dry eyes symptoms seem to be ever present and maybe this would explain why in the UK we have a pretty constant contact lens wearing population of just over three million but every year we have over a million dropouts! That means we must be attracting a million new wearers every year (well done to the marketing departments!) but we are also losing a million wearers every year. We certainly are not losing them all to the refractive surgery clinics. We know that almost anyone can now wear a contact lens and we know that some lenses will solve problems of sharper vision, some will aid comfort, and some will be useful for patients with dry eyes. So if we still have so many dropouts then we must be doing something wrong! I think the take home message has to be ‘must try harder’! I must end with an apology for two errors in my editorial of issue 1 earlier this year. Firstly there was a typo in the first sentence; I meant to state that it was 40 years not 30 years since the first commercial soft lens was available in the UK. The second error was one that I was unaware of until colleagues Geoff Wilson (Birmingham, UK) and Tim Bowden (London, UK) wrote to me to explain that soft lenses were actually available in the UK before 1971 (please see their ‘Letters to the Editor’ in this issue). I am grateful to both of them for correcting the mistake.
Resumo:
Objectives: The antimicrobial efficacy of a chlorhexidine gluconate (CHG) intravascular catheter gel dressing was evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and an extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. Chlorhexidine deposition on the skin surface and release from the gel were determined. Methods: The antimicrobial efficacy was evaluated in in vitro studies following microbial inoculation of the dressing and application of the dressing on the inoculated surface of a silicone membrane and donor skin [with and without a catheter segment and/or 10% (v/v) serum] on diffusion cells. Antimicrobial activity was evaluated for up to 7 days. Chlorhexidine skin surface deposition and release were also determined. Results: MRSA and E. coli were not detectable within 5 min following direct inoculation onto the CHG gel dressing. On the silicone membrane, 3 log and 6 log inocula of MRSA were eradicated within 5 min and 1 h, respectively. Time to kill was prolonged in the presence of serum and a catheter segment. Following inoculation of donor skin with 6 log cfu of MRSA, none was detected after 24 h. Chlorhexidine was released from the gel after a lag time of 30 min and increasing amounts were detected on the donor skin surface over the 48 h test period. The CHG gel dressing retained its antimicrobial activity on the artificial skin for 7 days. Conclusions: The CHG intravascular catheter site gel dressing had detectable antimicrobial activity for up to 7 days, which should suppress bacterial growth on the skin at the catheter insertion site, thereby reducing the risk of infection. © The Author 2011. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.
Resumo:
A high-performance fuel gauging sensor is described that uses five diaphragm-based pressure sensors, which are monitored using a linear array of polymer optical fiber Bragg gratings. The sensors were initially characterized using water, revealing a sensitivity of 98 pm/cm for four of the sensors and 86 pm/cm for the fifth. The discrepancy in the sensitivity of the fifth sensor has been explained as being a result of the annealing of the other four sensors. Initial testing in JET A-1 aviation fuel revealed the unsuitability of silicone rubber diaphragms for prolonged usage in fuel. A second set of sensors manufactured with a polyurethane-based diaphragm showed no measurable deterioration over a three month period immersed in fuel. These sensors exhibited a sensitivity of 39 pm/cm, which is less than the silicone rubber devices due to the stiffer nature of the polyurethane material used.
Resumo:
The successful design of polymers for contact lens applications depends on the ability to provide a balance of properties appropriate to the ocular environment. Principal relevant aspects of the anterior eye are the tear film, eyelid and cornea, which govern the requirements for surface properties, modulus and oxygen permeability, respectively. Permeability requirements and the developing view of the needs of the cornea, in terms of oxygen consumption and the particular roles of fluorine and silicon in the design of silicone hydrogels, which have proved to be the most successful family of materials for this demanding application, are discussed. The contact lens field is complicated by the fact that contact lenses are used in a range of wear modalities, the extremes of which can conveniently be classified as lenses that are disposed of at the end of a single period of daily wear and those used for 30. days of successive day-and-night periods, frequently referred to as extended or continuous wear. As silicone hydrogels developed, in the decade following their launch there has been a progressive trend in properties taking both modulus and water content closer to those of conventional hydrogels. This is particularly evident in the family of daily disposable contact lenses that have appeared since 2008.
Resumo:
Communication signals are shaped by the opposing selection pressures imposed by predators and mates. A dynamic signal might serve as an adaptive compromise between an inconspicuous signal that evades predators and an extravagant signal preferred by females. Such a signal has been described in the gymnotiform electric fish, Brachyhypopomus gauderio, which produces a sexually dimorphic electric organ discharge (EOD). The EOD varies on a circadian rhythm and in response to social cues. This signal plasticity is mediated by the slow action of androgens and rapid action of melanocortins. My dissertation research tested the hypotheses that (1) signal plasticity is related to sociality levels in gymnotiform species, and (2) differences in signal plasticity are regulated by differential sensitivity to androgen and melanocortin hormones. To assess the breadth of dynamic signaling within the order Gymnotiformes, I sampled 13 species from the five gymnotiform families. I recorded EODs to observe spontaneous signal oscillations after which I injected melanocortin hormones, saline control, or presented the fish with a conspecific. I showed that through the co-option of the ancient melanocortin pathway, gymnotiforms dynamically regulate EOD amplitude, spectral frequency, both, or neither. To investigate whether observed EOD plasticities are related to species-specific sociality I tested four species; two territorial, highly aggressive species, Gymnotus carapo and Apteronotus leptorhynchus, a highly gregarious species, Eigenmannia cf. virescens , and an intermediate short-lived species with a fluid social system, Brachyhypopomus gauderio. I examined the relationship between the androgens testosterone and 11-ketotestosterone, the melanocortin α-MSH, and their roles in regulating EOD waveform. I implanted all fish with androgen and blank silicone implants, and injected with α-MSH before and at the peak of implant effect. I found that waveforms of the most territorial and aggressive species were insensitive to hormone treatments; maintaining a static, stereotyped signal that preserves encoding of individual identity. Species with a fluid social system were most responsive to hormone treatments, exhibiting signals that reflect immediate condition and reproductive state. In conclusion, variation in gymnotiform signal plasticity is hormonally regulated and seems to reflect species-specific sociality.
Resumo:
Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.
Resumo:
This study presents a simple, fast and low cost technique for fabrication new conventional dentures from the duplication of old prosthesis in use by the patient. Colorless acrylic resin was poured into the moulds obtained by duplication of prosthesis. With the replicas obtained a functional impressions using polyether should be performed and they are stabilized with occlusal registration in acrylic resin. The molds need to be castings and mounted on an semi-adjustable articulator. The artificial teeth are positioned with the assistance of a guide made condensation silicone to reproduce the positioning of the teeth of the old prosthesis and fixed with wax 7. After approval of the teeth on the trial in wax, without adjustment of the planes, the prosthesis may be processed in the laboratory. After occlusal adjustment in the articulator the same can be installed.
Resumo:
Travail créatif / Creative Work
Resumo:
Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic capsules are an example of this. In this paper, a diagnostic capsule technology is described based on direct-access sensing of the Gastro Intestinal (GI) fluids throughout the GI tract. The objective of this paper is two-fold: i) develop a packaging method for a direct access sensor, ii) develop an encapsulation method to protect the system electronics. The integrity of the interconnection after sensor packaging and encapsulation is correlated to its reliability and thus of importance. The zero level packaging of the sensor was achieved by using a so called Flip Chip Over Hole (FCOH) method. This allowed the fluidic sensing media to interface with the sensor, while the rest of the chip including the electrical connections can be insulated effectively. Initial tests using Anisotropic Conductive Adhesive (ACA) interconnect for the FCOH demonstrated good electrical connections and functionality of the sensor chip. Also a preliminary encapsulation trial of the flip chipped sensor on a flexible test substrate has been carried out and showed that silicone encapsulation of the system is a viable option.
Resumo:
Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic sensing capsules are an example of these. In none of the diagnostic sensing capsules, is the sensor’s first level packaging achieved via Flip Chip Over Hole (FCOH) method using Anisotropic Conductive Adhesive (ACA). In a capsule application with direct access sensor (DAS), ACA not only provides the electrical interconnection but simultaneously seals the interconnect area and the underlying electronics. The development showed that the ACA FCOH was a viable option for the DAS interconnection. Adequate adhesive formed a strong joint that withstood a shear stress of 120N/mm2 and a compressive stress of 6N required to secure the final sensor assembly in place before encapsulation. Electrical characterization of the ACA joint in a fluid environment showed that the ACA was saturated with moisture and that the ions in the solution actively contributed to the leakage current, characterized by the varying rate of change of conductance. Long term hygrothermal aging of the ACA joint showed that a thermal strain of 0.004 and a hygroscopic strain of 0.0052 were present and resulted in a fatigue like process. In-vitro tests showed that high temperature and acidity had a deleterious effect of the ACA and its joint. It also showed that the ACA contact joints positioned at around or over 1mm would survive the gastrointestinal (GI) fluids and would be able to provide a reliable contact during the entire 72hr of the GI transit time. A final capsule demonstrator was achieved by successfully integrating the DAS, the battery and the final foldable circuitry into a glycerine capsule. Final capsule soak tests suggested that the silicone encapsulated system could survive the 72hr gut transition.
Resumo:
Pouvoir déterminer la provenance des sons est fondamental pour bien interagir avec notre environnement. La localisation auditive est une faculté importante et complexe du système auditif humain. Le cerveau doit décoder le signal acoustique pour en extraire les indices qui lui permettent de localiser une source sonore. Ces indices de localisation auditive dépendent en partie de propriétés morphologiques et environnementales qui ne peuvent être anticipées par l'encodage génétique. Le traitement de ces indices doit donc être ajusté par l'expérience durant la période de développement. À l’âge adulte, la plasticité en localisation auditive existe encore. Cette plasticité a été étudiée au niveau comportemental, mais on ne connaît que très peu ses corrélats et mécanismes neuronaux. La présente recherche avait pour objectif d'examiner cette plasticité, ainsi que les mécanismes d'encodage des indices de localisation auditive, tant sur le plan comportemental, qu'à travers les corrélats neuronaux du comportement observé. Dans les deux premières études, nous avons imposé un décalage perceptif de l’espace auditif horizontal à l’aide de bouchons d’oreille numériques. Nous avons montré que de jeunes adultes peuvent rapidement s’adapter à un décalage perceptif important. Au moyen de l’IRM fonctionnelle haute résolution, nous avons observé des changements de l’activité corticale auditive accompagnant cette adaptation, en termes de latéralisation hémisphérique. Nous avons également pu confirmer l’hypothèse de codage par hémichamp comme représentation de l'espace auditif horizontal. Dans une troisième étude, nous avons modifié l’indice auditif le plus important pour la perception de l’espace vertical à l’aide de moulages en silicone. Nous avons montré que l’adaptation à cette modification n’était suivie d’aucun effet consécutif au retrait des moulages, même lors de la toute première présentation d’un stimulus sonore. Ce résultat concorde avec l’hypothèse d’un mécanisme dit de many-to-one mapping, à travers lequel plusieurs profils spectraux peuvent être associés à une même position spatiale. Dans une quatrième étude, au moyen de l’IRM fonctionnelle et en tirant profit de l’adaptation aux moulages de silicone, nous avons révélé l’encodage de l’élévation sonore dans le cortex auditif humain.
Resumo:
Travail créatif / Creative Work
Resumo:
The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer–nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.
Resumo:
If magnetism is universal in nature, magnetic materials are ubiquitous. A life without magnetism is unthinkable and a day without the influence of a magnetic material is unimaginable. They find innumerable applications in the form of many passive and active devices namely, compass, electric motor, generator, microphone, loud speaker, maglev train, magnetic resonance imaging, data recording and reading, hadron collider etc. The list is endless. Such is the influence of magnetism and magnetic materials in ones day to day life. With the advent of nanoscience and nanotechnology, along with the emergence of new areas/fields such as spintronics, multiferroics and magnetic refrigeration, the importance of magnetism is ever increasing and attracting the attention of researchers worldwide. The search for a fluid which exhibits magnetism has been on for quite some time. However nature has not bestowed us with a magnetic fluid and hence it has been the dream of many researchers to synthesize a magnetic fluid which is thought to revolutionize many applications based on magnetism. The discovery of a magnetic fluid by Jacob Rabinow in the year 1952 paved the way for a new branch of Physics/Engineering which later became magnetic fluids. This gave birth to a new class of material called magnetorheological materials. Magnetorheological materials are considered superior to electrorheological materials in that magnetorheology is a contactless operation and often inexpensive.Most of the studies in the past on magnetorheological materials were based on magnetic fluids. Recently the focus has been on the solid state analogue of magnetic fluids which are called Magnetorheological Elastomers (MREs). The very word magnetorheological elastomer implies that the rheological properties of these materials can be altered by the influence of an external applied magnetic field and this process is reversible. If the application of an external magnetic field modifies the viscosity of a magnetic fluid, the effect of external magnetic stimuli on a magnetorheological elastomer is in the modification of its stiffness. They are reversible too. Magnetorheological materials exhibit variable stiffness and find applications in adaptive structures of aerospace, automotive civil and electrical engineering applications. The major advantage of MRE is that the particles are not able to settle with time and hence there is no need of a vessel to hold it. The possibility of hazardous waste leakage is no more with a solid MRE. Moreover, the particles in a solid MRE will not affect the performance and durability of the equipment. Usually MR solids work only in the pre yield region while MR fluids, typically work in the post yield state. The application of an external magnetic field modifies the stiffness constant, shear modulus and loss modulus which are complex quantities. In viscoelastic materials a part of the input energy is stored and released during each cycle and a part is dissipated as heat. The storage modulus G′ represents the capacity of the material to store energy of deformation, which contribute to material stiffness. The loss modulusG′′ represents the ability of the material to dissipate the energy of deformation. Such materials can find applications in the form of adaptive vibration absorbers (ATVAs), stiffness tunable mounts and variable impedance surfaces. MREs are an important material for automobile giants and became the focus of this research for eventual automatic vibration control, sound isolation, brakes, clutches and suspension systems