989 resultados para signal characteristics
Resumo:
Orientation: Research that considers the effects of individual characteristics and job characteristics jointly in burnout is necessary, especially when one considers the possibility of curvilinear relationships between job characteristics and burnout. Research purpose: This study examines the contribution of sense of coherence (SOC) and job characteristics to predicting burnout by considering direct and moderating effects. Motivation for this study: Understanding the relationships of individual and job characteristics with burnout is necessary for preventing burnout. It also informs the design of interventions. Research design, approach and method: The participants were 632 working adults (57% female) in South Africa. The measures included the Job Content Questionnaire, the Sense of Coherence Questionnaire and the Maslach Burnout Inventory. The authors analysed the data using hierarchical multiple regression with the enter method. Main findings: Job characteristics and SOC show the expected direct effects on burnout. SOC has a direct negative effect on burnout. Job demands and supervisor social support show nonlinear relationships with burnout. SOC moderates the effect of demands on burnout and has a protective function so that the demands-burnout relationship differs for those with high and low SOC. Practical/managerial implications: The types of effects, the shape of the stressor-strain relationship and the different contributions of individual and job characteristics have implications for designing interventions. Contribution/value add: SOC functions differently when combined with demands, control and support. These different effects suggest that it is not merely the presence or absence of a job characteristic that is important for well-being outcomes but how people respond to its presence or absence.
Resumo:
Wet pavement friction is known to be one of the most important roadway safety parameters. In this research, frictional properties of flexible (asphalt) pavements were investigated. As a part of this study, a laboratory device to polish asphalt specimens was refined and a procedure to evaluate mixture frictional properties was proposed. Following this procedure, 46 different Superpave mixtures, one stone matrix asphalt (SMA) mixture and one porous friction course (PFC) mixture were tested. In addition, 23 different asphalt and two concrete field sections were also tested for friction and noise. The results of both field and laboratory measurements were used to develop an International Friction Index (IFI)-based protocol for measurement of the frictional characteristics of asphalt pavements for laboratory friction measurements. Based on the results of the study, it appears the content of high friction aggregate should be 20% or more of the total aggregate blend when used with other, polish susceptible coarse aggregates; the frictional properties increased substantially as the friction aggregate content increased above 20%. Both steel slag and quartzite were found to improve the frictional properties of the blend, though steel slag had a lower polishing rate. In general, mixes containing soft limestone demonstrated lower friction values than comparable mixes with hard limestone or dolomite. Larger nominal maximum aggregate size mixes had better overall frictional performance than smaller sized mixes. In addition, mixes with higher fineness moduli generally had higher macrotexture and friction.
Resumo:
Changes in technology have an impact on standard practice, materials, and equipment. The traffic signal industry is constantly producing more energy-efficient and durable equipment, better communications, and more sophisticated detection and monitoring capabilities. Accordingly, this project provides an update to the traffic signal content within the Statewide Urban Design and Specifications (SUDAS) Design Manual and Standard Specifications. This work was completed through a technical advisory committee with a variety of participants representing contractors, the Iowa Department of Transportation, cities, consultants, vendors, and university research and support staff.
Resumo:
Iowa state, county, and city engineering offices expend considerable effort monitoring the state’s approximately 25,000 bridges, most of which span small waterways. In fact, the need for monitoring is actually greater for bridges over small waterways because scour processes are exacerbated by the close proximity of abutments, piers, channel banks, approach embankments, and other local obstructions. The bridges are customarily inspected biennially by the county’s road department bridge inspectors. It is extremely time consuming and difficult to obtain consistent, reliable, and timely information on bridge-waterway conditions for so many bridges. Moreover, the current approaches to gather survey information is not uniform, complete, and quantitative. The methodology and associated software (DIGIMAP) developed through the present project enable a non-intrusive means to conduct fast, efficient, and accurate inspection of the waterways in the vicinity of the bridges and culverts using one technique. The technique combines algorithms image of registration and velocimetry using images acquired with conventional devices at the inspection site. The comparison of the current bridge inspection and monitoring methods with the DIGIMAP methodology enables to conclude that the new procedure assembles quantitative information on the waterway hydrodynamic and morphologic features with considerable reduced effort, time, and cost. It also improves the safety of the bridge and culvert inspections conducted during normal and extreme hydrologic events. The data and information are recorded in a digital format, enabling immediate and convenient tracking of the waterway changes over short or long time intervals.
Resumo:
Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial sedimentary deposits. Here, we present the results of laboratory SIP measurements on saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel. We alter the pore characteristics using three principal methods: (i) variation of the grain sizes, (ii) changing the degree of compaction, and (iii) changing the level of sorting. We then examine how these changes affect both the SIP response and the hydraulic conductivity. In general, the results indicate a clear connection between the applied changes in pore characteristics and the SIP response. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the whole range of considered grain sizes.
Resumo:
The present study is an integral part of a broader study focused on the design and implementation of self-cleaning culverts, i.e., configurations that prevent the formation of sediment deposits after culvert construction or cleaning. Sediment deposition at culverts is influenced by many factors, including the size and characteristics of material of which the channel is composed, the hydraulic characteristics generated under different hydrology events, the culvert geometry design, channel transition design, and the vegetation around the channel. The multitude of combinations produced by this set of variables makes the investigation of practical situations a complex undertaking. In addition to the considerations above, the field and analytical observations have revealed flow complexities affecting the flow and sediment transport through culverts that further increase the dimensions of the investigation. The flow complexities investigated in this study entail: flow non-uniformity in the areas of transition to and from the culvert, flow unsteadiness due to the flood wave propagation through the channel, and the asynchronous correlation between the flow and sediment hydrographs resulting from storm events. To date, the literature contains no systematic studies on sediment transport through multi-box culverts or investigations on the adverse effects of sediment deposition at culverts. Moreover, there is limited knowledge about the non-uniform, unsteady sediment transport in channels of variable geometry. Furthermore, there are few readily useable (inexpensive and practical) numerical models that can reliably simulate flow and sediment transport in such complex situations. Given the current state of knowledge, the main goal of the present study is to investigate the above flow complexities in order to provide the needed insights for a series of ongoing culvert studies. The research was phased so that field observations were conducted first to understand the culvert behavior in Iowa landscape. Modeling through complementary hydraulic model and numerical experiments was subsequently carried out to gain the practical knowledge for the development of the self-cleaning culvert designs.
Resumo:
BACKGROUND: The long-term outcome of antiretroviral therapy (ART) is not assessed in controlled trials. We aimed to analyse trends in the population effectiveness of ART in the Swiss HIV Cohort Study over the last decade. METHODS: We analysed the odds of stably suppressed viral load (ssVL: three consecutive values <50 HIV-1 RNA copies/mL) and of CD4 cell count exceeding 500 cells/μL for each year between 2000 and 2008 in three scenarios: an open cohort; a closed cohort ignoring the influx of new participants after 2000; and a worst-case closed cohort retaining lost or dead patients as virological failures in subsequent years. We used generalized estimating equations with sex, age, risk, non-White ethnicity and era of starting combination ART (cART) as fixed co-factors. Time-updated co-factors included type of ART regimen, number of new drugs and adherence to therapy. RESULTS: The open cohort included 9802 individuals (median age 38 years; 31% female). From 2000 to 2008, the proportion of participants with ssVL increased from 37 to 64% [adjusted odds ratio (OR) per year 1.16 (95% CI 1.15-1.17)] and the proportion with CD4 count >500 cells/μL increased from 40 to >50% [OR 1.07 (95% CI 1.06-1.07)]. Similar trends were seen in the two closed cohorts. Adjustment did not substantially affect time trends. CONCLUSIONS: There was no relevant dilution effect through new participants entering the open clinical cohort, and the increase in virological/immunological success over time was not an artefact of the study design of open cohorts. This can partly be explained by new treatment options and other improvements in medical care.
Resumo:
PURPOSE: The macromolecule signal plays a key role in the precision and the accuracy of the metabolite quantification in short-TE (1) H MR spectroscopy. Macromolecules have been reported at 1.5 Tesla (T) to depend on the cerebral studied region and to be age specific. As metabolite concentrations vary locally, information about the profile of the macromolecule signal in different tissues may be of crucial importance. METHODS: The aim of this study was to investigate, at 7T for healthy subjects, the neurochemical profile differences provided by macromolecule signal measured in two different tissues in the occipital lobe, predominantly composed of white matter tissue or of grey matter tissue. RESULTS: White matter-rich macromolecule signal was relatively lower than the gray matter-rich macromolecule signal from 1.5 to 1.8 ppm and from 2.3 to 2.5 ppm with mean difference over these regions of 7% and 12% (relative to the reference peak at 0.9 ppm), respectively. The neurochemical profiles, when using either of the two macromolecule signals, were similar for 11 reliably quantified metabolites (CRLB < 20%) with relatively small concentration differences (< 0.3 μmol/g), except Glu (± 0.8 μmol/g). CONCLUSION: Given the small quantification differences, we conclude that a general macromolecule baseline provides a sufficiently accurate neurochemical profile in occipital lobe at 7T in healthy human brain.
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Bimodal size distributions were generally observed (5 μm and <1 μm). Surface characteristics of PM4 varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly (p<0.05) during two consecutive days of exposure for non-smoker workers. On the other hand, no statistically significant differences were observed for serum levels of hexanal, nonanal and 4- hydroxy-nonenal (p>0.05). Biomarkers levels will be compared to exposure variables to gain a better understanding of the relation between the particulate characteristics and the formation of ROS by-products. This project is financed by the Swiss State Secretariat for Education and Research. It is conducted within the framework of the COST Action 633 "Particulate Matter - Properties Related to Health Effects".
Resumo:
Selostus: Puna-apilan pysyvyys apila-heinänurmessa sekä seosnurmen satoisuus ja laadun muutokset erilaisissa kasvuoloissa
Resumo:
In the plant-beneficial bacterium Pseudomonas fluorescens CHA0, the expression of antifungal exoproducts is controlled by the GacS/GacA two-component system. Two RNA binding proteins (RsmA, RsmE) ensure effective translational repression of exoproduct mRNAs. At high cell population densities, GacA induces three small RNAs (RsmX, RsmY, RsmZ) which sequester both RsmA and RsmE, thereby relieving translational repression. Here we systematically analyse the features that allow the RNA binding proteins to interact strongly with the 5' untranslated leader mRNA of the P. fluorescens hcnA gene (encoding hydrogen cyanide synthase subunit A). We obtained evidence for three major RsmA/RsmE recognition elements in the hcnA leader, based on directed mutagenesis, RsmE footprints and toeprints, and in vivo expression data. Two recognition elements were found in two stem-loop structures whose existence in the 5' leader region was confirmed by lead(II) cleavage analysis. The third recognition element, which overlapped the hcnA Shine-Dalgarno sequence, was postulated to adopt either an open conformation, which would favour ribosome binding, or a stem-loop structure, which may form upon interaction with RsmA/RsmE and would inhibit access of ribosomes. Effective control of hcnA expression by the Gac/Rsm system appears to result from the combination of the three appropriately spaced recognition elements.
Resumo:
Among the metastasis patterns of head and neck squamous cell carcinoma (HNSCC), intracranial spread is a rare but dreaded event. To date only very few cases have been reported and clinical and molecular data are sparse. We screened our archives for HNSCC patients from 1992 to 2005 who were diagnosed with brain metastases (BM). For retrospective analysis, all clinico-pathological data including disease-free survival (DFS), local progression-free survival (LPFS), and overall survival (OS) were compiled. Additionally, we assessed the mutational status of the TP53 gene and the prevalence of HPV serotypes by PCR and Sanger sequencing. Immunohistochemistry was applied to detect p16INK4A expression levels as surrogate marker for HPV infection. The prevalence rate of BM in our cohort comprising 193 patients with advanced HNSCC was 5.7Â %. Of 11 patients with BM, 3 were female and 9 were male. Seven of the primary tumors were of oropharyngeal origin (OPSCC). LPFS of the cohort was 11.8Â months, DFS was 12.1Â months and OS was 36.0Â months. After the diagnosis of BM, survival was 10.5Â months. Five tumors showed a mutation in the TP53 gene, while five of the seven OPSCC tumors had a positive HPV status displaying infection with serotype 16 in all cases. Compared with patients who harbored TP53wt/HPV-positive tumors, patients with TP53 mutations showed a poor prognosis. Compared with the whole cohort, the interval between diagnosis of the primary and the detection of BM was prolonged in the HPV-infected OPSCC subgroup (26.4 vs. 45.6Â months). The prognosis of HNSCC patients with BM is poor. In our cohort, most tumors were OPSCC with the majority being HPV positive. Our study points toward a putatively unusual metastatic behavior of HPV-positive OPSCC.
Resumo:
The present work constitutes the first ultrastructural analysis of the spermatozoon in the Pleurogenidae, with the study of three species belonging to three of the 16 genera included in this family, namely Pleurogenes claviger, Pleurogenoides medians and Prosotocus confusus. The mature spermatozoa of these pleurogenids present two axonemes of the 9+'1' trepaxonematan pattern, a nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation, spine-like bodies and granules of glycogen. The organization of these characters in the sperm cell is similar in the three species. Thus, the anterior spermatozoon extremity is filiform and a continuous and submembranous layer of parallel cortical microtubules surrounds the axonemes at their anterior end. The posterior spermatozoon extremity exhibits the second axoneme and corresponds to the Cryptogonimidean type of Quilichini et al. (2010). Slight differences were noted between the spermatozoon of P. confusus and those of the two remaining species in the location of mitochondria.
Resumo:
Abstract