881 resultados para sensor-based control


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the sinusoidal phase modulating interferometer technique, the high-speed CCD is necessary to detect the interference signals. The reason of ordinary CCD's low frame rate was analyzed, and a novel high-speed image sensing technique with adjustable frame rate based on ail ordinary CCD was proposed. And the principle of the image sensor was analyzed. When the maximum frequency and channel bandwidth were constant, a custom high-speed sensor was designed by using the ordinary CCD under the control of the special driving circuit. The frame rate of the ordinary CCD has been enhanced by controlling the number of pixels of every frame; therefore, the ordinary of CCD can be used as the high frame rate image sensor with small amount of pixels. The multi-output high-speed image sensor has the deficiencies of low accuracy, and high cost, while the high-speed image senor with small number of pixels by using this technique can overcome theses faults. The light intensity varying with time was measured by using the image sensor. The frame rate was LIP to 1600 frame per second (f/s), and the size of every frame and the frame rate were adjustable. The correlation coefficient between the measurement result and the standard values were higher than 0.98026, and the relative error was lower than 0.53%. The experimental results show that this sensor is fit to the measurements of sinusoidal phase modulating interferometer technique. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the design and characterization of a fiber Fabry-Perot interferometer (FFPI) acoustic wave detector with its Q point being stabilized actively. The relationship between the reflectivity of the F-P cavity facets and cavity length was theoretically analyzed, and high visibility of 100% was realized by optimized design of the F-P cavity. To prevent the drifting of the Q point, a new stabilization method by actively feedback controlling of the diode laser is proposed and demonstrated, indicating the method is simple and easy operating. Measurement shows that good tracing of Q point was effectively realized. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new smart concrete aggregate design as a candidate for applications in structural health monitoring (SHM) of critical elements in civil infrastructure is proposed. The cement-based stress/strain sensor was developed by utilizing the stress/strain sensing properties of a magnetic microwire embedded in cement-based composite (MMCC). This is a contact-less type sensor that measures variations of magnetic properties resulting from stress variations. Sensors made of these materials can be designed to satisfy the specific demand for an economic way to monitor concrete infrastructure health. For this purpose, we embedded a thin magnetic microwire in the core of a cement-based cylinder, which was inserted into the concrete specimen under study as an extra aggregate. The experimental results show that the embedded MMCC sensor is capable of measuring internal compressive stress around the range of 1-30 MPa. Two stress sensing properties of the embedded sensor under uniaxial compression were studied: the peak amplitude and peak position of magnetic switching field. The sensitivity values for the amplitude and position within the measured range were 5 mV/MPa and 2.5 mu s/MPa, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The manufacturing industry is currently facing unprecedented challenges from changes and disturbances. The sources of these changes and disturbances are of different scope and magnitude. They can be of a commercial nature, or linked to fast product development and design, or purely operational (e.g. rush order, machine breakdown, material shortage etc.). In order to meet these requirements it is increasingly important that a production operation be flexible and is able to adapt to new and more suitable ways of operating. This paper focuses on a new strategy for enabling manufacturing control systems to adapt to changing conditions both in terms of product variation and production system upgrades. The approach proposed is based on two key concepts: (1) An autonomous and distributed approach to manufacturing control based on multi-agent methods in which so called operational agents represent the key physical and logical elements in the production environment to be controlled - for example, products and machines and the control strategies that drive them and (2) An adaptation mechanism based around the evolutionary concept of replicator dynamics which updates the behaviour of newly formed operational agents based on historical performance records in order to be better suited to the production environment. An application of this approach for route selection of similar products in manufacturing flow shops is developed and is illustrated in this paper using an example based on the control of an automobile paint shop.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two new maximum power point tracking algorithms are presented: the input voltage sensor, and duty ratio maximum power point tracking algorithm (ViSD algorithm); and the output voltage sensor, and duty ratio maximum power point tracking algorithm (VoSD algorithm). The ViSD and VoSD algorithms have the features, characteristics and advantages of the incremental conductance algorithm (INC); but, unlike the incremental conductance algorithm which requires two sensors (the voltage sensor and current sensor), the two algorithms are more desirable because they require only one sensor: the voltage sensor. Moreover, the VoSD technique is less complex; hence, it requires less computational processing. Both the ViSD and the VoSD techniques operate by maximising power at the converter output, instead of the input. The ViSD algorithm uses a voltage sensor placed at the input of a boost converter, while the VoSD algorithm uses a voltage sensor placed at the output of a boost converter. © 2011 IEEE.