838 resultados para seagrass ecosystems
Resumo:
This thesis deals with the issues of quantifying economic values of coastal and marine ecosystem services and assessing their use in decision-making. The first analytical part of the thesis focuses on estimating non-market use and non-use values, with an application in New-Caledonia using Discrete Choice Experiment. The second part examines how and to what extent the economic valuation of ecosystem services is used in coastal management decision-making with an application in Australia. Using a multi-criteria analysis, the relative importance of ecological, social and economic evaluation criteria is also assessed in the context of coastal development.
Resumo:
Thraustochytrids have become of considerable industrial and scientific interest in the past decade due to their health benefits. They have been proven to be the principle source in marine and estuarine fish diets with high percentage of long chain (LC) or polyunsaturated fatty acids (PUFA). Therefore, the oil extracted from fish for human document.forms[0].elements[13].select();consumption is rich in PUFA with high omega-3 fatty acid content. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of all of the omega-3 fatty acids, are considered beneficial essential oils for humans with a wide range of health benefits. These include brain and neural development in infants, general wellbeing of adults and drug delivery through precursor molecules. They have become one of the most extensively studied organisms for industrial oil preparations as PUFA extraction from fish becomes less profitable. Many forms of these Thraustochytrid oils are being trialled for human consumption all over the world. In Australia, there has been little research performed on these organisms in the past ten years. A few Australian studies have been conducted in the form of comparative studies related to PUFA production within the related genera, but not focussed on their identification or cellular and genomic characterisation. Therefore, the main aim of this study was to investigate the morphological and genetic characteristics of Australian Thraustochytrids in order to aid in their identification and characterisation, as well as to better understand the effect of environmental conditions in the regulation of PUFA production. It was also noted that there was a knowledge gap in the preservation and total genomic DNA extraction of these organisms for the purposes of scientific research. The cryopreservation of these organisms for studies around the world follows existing generic methods. However, it is well understood that many of these generic methods attract not only high costs for chemicals, but also uses considerable storage space and other resources, all of which can be improved with new or modified approaches. In this context, a simple and inexpensive bead preservation method is described, without compromising the storage shelf life. We also describe, for the first time, the effects of culture age on the successful cryopreservation of Thraustochytrids. It was evident in the literature that DNA and RNA extractions for molecular and genetic studies of Thraustochytrids follow the classical phenol-chloroform extraction methods. It was also observed that modern protocols failed to avoid the use of phenol-chloroform rather than improving preparation and cell disruption. In order to provide a high quantity and quality DNA extraction, a modified protocol has been introduced that employs the use of modern commercial extraction kits and standard laboratory equipment. Thraustochytrids have been shown to be highly conserved in their 18S rDNA gene sequences, which is used as the current standard for identification. It was demonstrated that the 18S rDNA gene sequence limits the recognition of closely related genera or within the genera from each member. Therefore, it was proposed that another profile, such as a randomly amplified polymorphic DNA (RAPD) based profiling system, be tested for use in the characterisation of Thraustochytrids. The RAPD profiles were shown to provide a unique DNA fingerprint for each isolate and small variations in their genome were able to be detected. This method involved the use of a minimum number of standard arbitrary primers and with an increase in the number of different primers used, a very high discrimination between organisms could be achieved. However, the method was not suitable for taxonomic purposes because the results did not correlate with other taxonomic features such as morphology. Another knowledge gap was found with respect to Australian Thraustochytrid growth characteristics, in that these had not been recorded and published. In order to rectify this, a record of colony and microscopic features of 12 selected isolates was performed. The results of preliminary studies indicated that further microbiological and biochemical studies are needed for full characterisation of these organisms. This information is of great importance to bio-prospecting of new Thraustochytrids from Australian ecosystems and would allow for their accurate identification, and so permit the prediction of their PUFA capability by comparison with related genera/species. It was well recognized that environmental stress plays a role in the PUFA production and is mainly due to the reactive oxygen species as abiotic stress (Chiou et al., 2001; Okuyama et al., 2008; Shabala et al., 2009; Shabala et al., 2001). In this aspect, this study makes the first attempt towards better understanding of this phenomenon by way of the use of real-time PCR for the detection of environmental effects on the regulation of PUFA production. Three main environmental conditions including temperature, pH and oxygen availability were monitored as stress inducers. In summary, this study provides novel approaches for the preservation and handling of Thraustochytrids, their molecular biological features, taxonomy, characterisation and responses to environmental factors with respect to their oil production enzymes. The information produced from this study will prove to be vital for both industrial and scientific investigations in the future.
Resumo:
Product Ecosystem theory is an emerging theory that shows that disruptive “game changing” innovation is only possible when the entire ecosystem is considered. When environmental variables change faster than products or services can adapt, disruptive innovation is required to keep pace. This has many parallels with natural ecosystems where species that cannot keep up with changes to the environment will struggle or become extinct. In this case the environment is the city, the environmental pressures are pollution and congestion, the product is the car and the product ecosystem is comprised of roads, bridges, traffic lights, legislation, refuelling facilities etc. Each one of these components is the responsibility of a different organisation and so any change that affects the whole ecosystem requires a transdisciplinary approach. As a simple example, cars that communicate wirelessly with traffic lights are only of value if wireless-enabled traffic lights exist and vice versa. Cars that drive themselves are technically possible but legislation in most places doesn’t allow their use. According to innovation theory, incremental innovation tends to chase ever diminishing returns and becomes increasingly unable to tackle the “big issues.” Eventually “game changing” disruptive innovation comes along and solves the “big issues” and/or provides new opportunities. Seen through this lens, the environmental pressures of urban traffic congestion and pollution are the “big issues.” It can be argued that the design of cars and the other components of the product ecosystem follow an incremental innovation approach. That is why the “big issues” remain unresolved. This paper explores the problems of pollution and congestion in urban environments from a Product Ecosystem perspective. From this a strategy will be proposed for a transdisciplinary approach to develop and implement solutions.
Resumo:
This report presents the final deliverable from the project titled Conceptual and statistical framework for a water quality component of an integrated report card’ funded by the Marine and Tropical Sciences Research Facility (MTSRF; Project 3.7.7). The key management driver of this, and a number of other MTSRF projects concerned with indicator development, is the requirement for state and federal government authorities and other stakeholders to provide robust assessments of the present ‘state’ or ‘health’ of regional ecosystems in the Great Barrier Reef (GBR) catchments and adjacent marine waters. An integrated report card format, that encompasses both biophysical and socioeconomic factors, is an appropriate framework through which to deliver these assessments and meet a variety of reporting requirements. It is now well recognised that a ‘report card’ format for environmental reporting is very effective for community and stakeholder communication and engagement, and can be a key driver in galvanising community and political commitment and action. Although a report card it needs to be understandable by all levels of the community, it also needs to be underpinned by sound, quality-assured science. In this regard this project was to develop approaches to address the statistical issues that arise from amalgamation or integration of sets of discrete indicators into a final score or assessment of the state of the system. In brief, the two main issues are (1) selecting, measuring and interpreting specific indicators that vary both in space and time, and (2) integrating a range of indicators in such a way as to provide a succinct but robust overview of the state of the system. Although there is considerable research and knowledge of the use of indicators to inform the management of ecological, social and economic systems, methods on how to best to integrate multiple disparate indicators remain poorly developed. Therefore the objective of this project was to (i) focus on statistical approaches aimed at ensuring that estimates of individual indicators are as robust as possible, and (ii) present methods that can be used to report on the overall state of the system by integrating estimates of individual indicators. It was agreed at the outset, that this project was to focus on developing methods for a water quality report card. This was driven largely by the requirements of Reef Water Quality Protection Plan (RWQPP) and led to strong partner engagement with the Reef Water Quality Partnership.
Resumo:
Abstract: Australia’s ecosystems are the basis of our current and future prosperity, and our national well-being.A strong and sustainable Australian ecosystem science enterprise is vital for understanding and securing these ecosystems in the face of current and future challenges. This Plan defines the vision and key directions for a national ecosystem science capability that will enable Australia to understand and effectively manage its ecosystems for decades to come.The Plan’s underlying theme is that excellent science supports a range of activities, including public engagement, that enable us to understand and maintain healthy ecosystems.Those healthy ecosystems are the cornerstone of our social and economic well-being.The vision guiding the development of this Plan is that in 20 years’ time the status of Australian ecosystems and how they change will be widely reported and understood, and the prosperity and well-being they provide will be secure. To enable this, Australia’s national ecosystem science capability will be coordinated, collaborative and connected.The Plan is based on an extensive set of collaboratively generated proposals from national town hall meetings that also formthe basis for its implementation. Some directions within the Plan are for the Australian ecosystem science community itself to implement, others will involve the users of ecosystem science and the groups that fund ecosystem science.We identify six equal priority areas for action to achieve our vision: (i) delivering maximum impact for Australia: enhancing relationships between scientists and end-users; (ii) supporting long-termresearch; (iii) enabling ecosystem surveillance; (iv) making the most of data resources; (v) inspiring a generation: empowering the public with knowledge and opportunities; (vi) facilitating coordination, collaboration and leadership. This shared vision will enable us to consolidate our current successes, overcome remaining barriers and establish the foundations to ensure Australian ecosystem science delivers for the future needs of Australia..
Resumo:
Acid sulfate soils (ASS) is a stress factor that is responsible for the failure of some mangrove restoration projects, including abandoned aquaculture ponds converted from mangrove ecosystems. Through experimental and field studies, this research provides a better understanding of the biogeochemistry of ASS disturbance and the response of mangrove seedlings (Rhizophoraceae) under high metal levels and acidic conditions. This study found that mangrove restorations under ASS disturbance can work but with lower numbers of survived seedlings. To prevent toxicity under high levels of metal, seedlings retained metals in their roots and sparingly distributed them into aerial parts with low mobility. The presence of high levels of potential acidity parameters would allow pyrite to oxidise, thus increasing metal levels and acidity, which in turn affected the survival and growth of the seedlings.
Resumo:
Monitoring the environment with acoustic sensors is an effective method for understanding changes in ecosystems. Through extensive monitoring, large-scale, ecologically relevant, datasets can be produced that can inform environmental policy. The collection of acoustic sensor data is a solved problem; the current challenge is the management and analysis of raw audio data to produce useful datasets for ecologists. This paper presents the applied research we use to analyze big acoustic datasets. Its core contribution is the presentation of practical large-scale acoustic data analysis methodologies. We describe details of the data workflows we use to provide both citizen scientists and researchers practical access to large volumes of ecoacoustic data. Finally, we propose a work in progress large-scale architecture for analysis driven by a hybrid cloud-and-local production-grade website.
Resumo:
Rapid urbanization has brought environmentally, socially, and economically great challenges to cities and societies. To build a sustainable city, these challenges need to be faced efficiently and successfully. This paper focuses on the environmental issues and investigates the ecological approaches for planning sustainable cities through a comprehensive review of the relevant literature. The review focuses on several differing aspects of sustainable city formation. The paper provides insights on the interaction between the natural environment and human activities by identifying environmental effects resulting from this interaction; provides an introduction to the concept of sustainable urban development by underlining the important role of ecological planning in achieving sustainable cities; introduces the notion of urban ecosystems by establishing principles for the management of their sustainability; describes urban ecosystem sustainability assessment by introducing a review of current assessment methods, and; offers an outline of indexing urban environmental sustainability. The paper concludes with a summary of the findings.
Resumo:
Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.
Resumo:
"First published in 1988, Ecological and Behavioral Methods for the Study of Bats is widely acknowledged as the primary reference for both amateur and professional bat researchers. Bats are the second most diverse group of mammals on the earth. They live on every continent except Antarctica, ranging from deserts to tropical forests to mountains, and their activities have a profound effect on the ecosystems in which they live. Despite their ubiquity and importance, bats are challenging to study. This volume provides researchers, conservationists, and consultants with the ecological background and specific information essential for studying bats in the wild and in captivity. Chapters detail many of the newest and most commonly used field and laboratory techniques needed to advance the study of bats, describe how these methods are applied to the study of the ecology and behavior of bats, and offer advice on how to interpret the results of research. The book includes forty-three chapters, fourteen of which are new to the second edition, with information on molecular ecology and evolution, bioacoustics, chemical communication, flight dynamics, population models, and methods for assessing postnatal growth and development. Fully illustrated and featuring contributions from the world’s leading experts in bat biology, this reference contains everything bat researchers and natural resource managers need to know for the study and conservation of this wide-ranging, ecologically vital, and diverse taxon."--Publisher website
Resumo:
This paper develops a dynamic model for cost-effective selection of sites for restoring biodiversity when habitat quality develops over time and is uncertain. A safety-first decision criterion is used for ensuring a minimum level of habitats, and this is formulated in a chance-constrained programming framework. The theoretical results show; (i) inclusion of quality growth reduces overall cost for achieving a future biodiversity target from relatively early establishment of habitats, but (ii) consideration of uncertainty in growth increases total cost and delays establishment, and (iii) cost-effective trading of habitat requires exchange rate between sites that varies over time. An empirical application to the red listed umbrella species - white-backed woodpecker - shows that the total cost of achieving habitat targets specified in the Swedish recovery plan is doubled if the target is to be achieved with high reliability, and that equilibrating price on a habitat trading market differs considerably between different quality growth combinations. © 2013 Elsevier GmbH.
Resumo:
Successful biodiversity conservation requires safeguarding viable populations of species. To work with this challenge Sweden has introduced a concept of Action Plans, which focus on the recovery of one or more species; while keeping in mind the philosophy of addressing ecosystems in a more comprehensive way, following the umbrella concept. In this paper we investigate the implementationprocess of the ActionPlanfor one umbrella species, the White-backed Woodpecker (WBW) Dendrocopos leucotos. We describe the plan's organisation and goals, and investigate its implementation and accomplishment of particular targets, based on interviewing and surveying the key actors. The achievement of the targets in 2005-2008 was on average much lower than planned, explained partially by the lack of knowledge/data, experienced workers, and administrative flexibility. Surprisingly, the perceived importance of particular conservation measures, the investment priority accorded to them, the money available and various practical obstacles all failed to kg? explain the target levels achieved. However qualitative data from both the interviews and the survey highlight possible implementation obstacles: competing interests with other conservation actions and the level of engagement of particular implementing actors. Therefore we suggest that for successful implementation of recovery plans, there is aneed for initial and inclusive scoping prior to embarking on the plan, where not only issues like ecological knowledge and practical resources are considered, but also possible conflicts and synergies with other conservation actions. An adaptive approach with regular review of the conservation process is essential, particularly in the case of such complex action plans as the one for the WBW.
Resumo:
It is becoming increasingly popular to consider species interactions when managing ecological foodwebs. Such an approach is useful in determining how management can affect multiple species, with either beneficial or detrimental consequences. Identifying such actions is particularly valuable in the context of conservation decision making as funding is severely limited. This paper outlines a new approach that simplifies the resource allocation problem in a two species system for a range of species interactions: independent, mutualism, predator-prey, and competitive exclusion. We assume that both species are endangered and we do not account for decisions over time. We find that optimal funding allocation is to the conservation of the species with the highest marginal gain in expected probability of survival and that, across all except mutualist interaction types, optimal conservation funding allocation differs between species. Loss in efficiency from ignoring species interactions was most severe in predator-prey systems. The funding problem we address, where an ecosystem includes multiple threatened species, will only become more commonplace as increasing numbers of species worldwide become threatened. © 2011 Elsevier B.V.
Resumo:
The 2010 biodiversity target agreed by signatories to the Convention on Biological Diversity directed the attention of conservation professionals toward the development of indicators with which to measure changes in biological diversity at the global scale. We considered why global biodiversity indicators are needed, what characteristics successful global indicators have, and how existing indicators perform. Because monitoring could absorb a large proportion of funds available for conservation, we believe indicators should be linked explicitly to monitoring objectives and decisions about which monitoring schemes deserve funding should be informed by predictions of the value of such schemes to decision making. We suggest that raising awareness among the public and policy makers, auditing management actions, and informing policy choices are the most important global monitoring objectives. Using four well-developed indicators of biological diversity (extent of forests, coverage of protected areas, Living Planet Index, Red List Index) as examples, we analyzed the characteristics needed for indicators to meet these objectives. We recommend that conservation professionals improve on existing indicators by eliminating spatial biases in data availability, fill gaps in information about ecosystems other than forests, and improve understanding of the way indicators respond to policy changes. Monitoring is not an end in itself, and we believe it is vital that the ultimate objectives of global monitoring of biological diversity inform development of new indicators. ©2010 Society for Conservation Biology.