890 resultados para seagrass ecosystem
Resumo:
Ecosystem functioning in grasslands is regulated by a range of biotic and abiotic factors, and the role of microbial communities in regulating ecosystem function has been the subject of much recent scrutiny. However, there are still knowledge gaps regarding the impacts of rainfall and vegetation change upon microbial communities and the implications of these changes for ecosystem functioning. We investigated this issue using data from an experimental mesotrophic grassland study in south-east England, which had been subjected to four years of rainfall and plant functional composition manipulations. Soil respiration, nitrogen and phosphorus stocks were measured, and the abundance and community structure of soil microbes were characterised using quantitative PCR and multiplex-TRFLP analysis, respectively. Bacterial community structure was strongly related to the plant functional composition treatments, but not the rainfall treatment. However, there was a strong effect of both rainfall change and plant functional group upon bacterial abundance. There was also a weak interactive effect of the two treatments upon fungal community structure, although fungal abundance was not affected by either treatment. Next, we used a statistical approach to assess whether treatment effects on ecosystem function were regulated by the microbial community. Our results revealed that ecosystem function was influenced by the experimental treatments, but was not related to associated changes to the microbial community. Overall, these results indicate that changes in fungal and bacterial community structure and abundance play a relatively minor role in determining grassland ecosystem function responses to precipitation and plant functional composition change, and that direct effects on soil physical and chemical properties and upon plant and microbial physiology may play a more important role.
Resumo:
Our knowledge about the effect of single-tree influence areas on the physicochemical properties of the underlying mineral soil in forest ecosystems is still limited. This restricts our ability to adequately estimate future changes in soil functioning due to forest management practices. We studied the stand scale spatial variation of different soil organic matter species investigated by 13C NMR spectroscopy, lignin phenol and neutral sugar analysis under an unmanaged mountainous high-elevation Norway spruce (Picea abies L.) forest in central Europe. Multivariate geostatistical approaches were applied to relate the spatial patterns of the different soil organic matter species to topographic parameters, bulk density, oxalate- and dithionite-extractable iron, pH, and the impact of tree distribution. Soil samples were taken from the mineral top soil. Generally, the stand scale distribution patterns of different soil organic matter compounds could be divided into two groups: Those compounds, which were significantly spatially correlated with topography/altitude and those with small scale spatial pattern (range ≤ 10 m) that was closely related to tree distribution. The concentration of plant-derived soil organic matter components, such as lignin, at a given sampling point was significantly spatially related to the distance of the nearest tree (p ≤ 0.05). In contrast, the spatial distribution of mainly microbial-derived compounds (e.g. galactose and mannose) could be attributed to the dominating impact of small-scale topography and the contribution of poorly crystalline iron oxides that were significantly larger in the central depression of the study site compared to crest and slope positions. Our results demonstrate that topographic parameters dominate the distribution of overall topsoil organic carbon (OC) stocks at temperate high-elevation forest ecosystems, particularly in sloped terrain. However, trees superimpose topography-controlled OC biogeochemistry beneath their crown by releasing litter and changing soil conditions in comparison to open areas. This may lead to distinct zones with different mechanisms of soil organic matter degradation and also stabilization in forest stands.
Resumo:
Aim Our aims were to compare the composition of testate amoeba (TA) communities from Santa Cruz Island, Galápagos Archipelago, which are likely in existence only as a result of anthropogenic habitat transformation, with similar naturally occurring communities from northern and southern continental peatlands. Additionally, we aimed at assessing the importance of niche-based and dispersal-based processes in determining community composition and taxonomic and functional diversity. Location The humid highlands of the central island of Santa Cruz, Galápagos Archipelago. Methods We survey the alpha, beta and gamma taxonomic and functional diversities of TA, and the changes in functional traits along a gradient of wet to dry habitats. We compare the TA community composition, abundance and frequency recorded in the insular peatlands with that recorded in continental peatlands of Northern and Southern Hemispheres. We use generalized linear models to determine how environmental conditions influence taxonomic and functional diversity as well as the mean values of functional traits within communities. We finally apply variance partitioning to assess the relative importance of niche- and dispersal-based processes in determining community composition. Results TA communities in Santa Cruz Island were different from their Northern Hemisphere and South American counterparts with most genera considered as characteristic for Northern Hemisphere and South American Sphagnum peatlands missing or very rare in the Galápagos. Functional traits were most correlated with elevation and site topography and alpha functional diversity to the type of material sampled and site topography. Community composition was more strongly correlated with spatial variables than with environmental ones. Main conclusions TA communities of the Sphagnum peatlands of Santa Cruz Island and the mechanisms shaping these communities contrast with Northern Hemisphere and South American peatlands. Soil moisture was not a strong predictor of community composition most likely because rainfall and clouds provide sufficient moisture. Dispersal limitation was more important than environmental filtering because of the isolation of the insular peatlands from continental ones and the young ecological history of these ecosystems.
Resumo:
Despite numerous research efforts over the last decades, integrating the concept of ecosystem servicesinto land management decision-making continues to pose considerable challenges. Researchers havedeveloped many different frameworks to operationalize the concept, but these are often specific to acertain issue and each has their own definitions and understandings of particular terms. Based on acomprehensive review of the current scientific debate, the EU FP7 project RECARE proposes an adaptedframework for soil-related ecosystem services that is suited for practical application in the preventionand remediation of soil degradation across Europe. We have adapted existing frameworks by integratingcomponents from soil science while attempting to introduce a consistent terminology that is understand-able to a variety of stakeholders. RECARE aims to assess how soil threats and prevention and remediationmeasures affect ecosystem services. Changes in the natural capital’s properties influence soil processes,which support the provision of ecosystem services. The benefits produced by these ecosystem servicesare explicitly or implicitly valued by individuals and society. This can influence decision- and policymak-ing at different scales, potentially leading to a societal response, such as improved land management.The proposed ecosystem services framework will be applied by the RECARE project in a transdisciplinaryprocess. It will assist in singling out the most beneficial land management measures and in identifyingtrade-offs and win–win situations resulting from and impacted by European policies. The framework thusreflects the specific contributions soils make to ecosystem services and helps reveal changes in ecosystemservices caused by soil management and policies impacting on soil. At the same time, the framework issimple and robust enough for practical application in assessing soil threats and their management withstakeholders at various levels.
Resumo:
Insects provide crucial ecosystem services for human food security and maintenance of biodiversity. Therefore, major declines in wild insects combined with losses of managed bees have raised great concern. Recent data suggest that honey bees appear to be less susceptible to stressors compared to other species. Here, we argue that eusociality plays a key role for the susceptibility of insects to environmental stressors due to superorganism resilience, which can be defined as the ability to tolerate the loss of somatic cells (= workers) as long as the germ line (= reproduction) is maintained. Life history and colony size appear critical for such resilience. Future conservation efforts should take superorganism resilience into account to safeguard ecosystem services by insects.
Resumo:
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.
Resumo:
This paper forms part of a broader overview of biodiversity of marine life in the Gulf of Maine area (GoMA), facilitated by the GoMA Census of Marine Life program. It synthesizes current data on species diversity of zooplankton and pelagic nekton, including compilation of observed species and descriptions of seasonal, regional and cross-shelf diversity patterns. Zooplankton diversity in the GoMA is characterized by spatial differences in community composition among the neritic environment, the coastal shelf, and deep offshore waters. Copepod diversity increased with depth on the Scotian Shelf. On the coastal shelf of the western Gulf of Maine, the number of higher-level taxonomic groups declined with distance from shore, reflecting more nearshore meroplankton. Copepod diversity increased in late summer, and interdecadal diversity shifts were observed, including a period of higher diversity in the 1990s. Changes in species diversity were greatest on interannual scales, intermediate on seasonal scales, and smallest across regions, in contrast to abundance patterns, suggesting that zooplankton diversity may be a more sensitive indicator of ecosystem response to interannual climate variation than zooplankton abundance. Local factors such as bathymetry, proximity of the coast, and advection probably drive zooplankton and pelagic nekton diversity patterns in the GoMA, while ocean-basin-scale diversity patterns probably contribute to the increase in diversity at the Scotian Shelf break, a zone of mixing between the cold-temperate community of the shelf and the warm-water community offshore. Pressing research needs include establishment of a comprehensive system for observing change in zooplankton and pelagic nekton diversity, enhanced observations of "underknown'' but important functional components of the ecosystem, population and metapopulation studies, and development of analytical modeling tools to enhance understanding of diversity patterns and drivers. Ultimately, sustained observations and modeling analysis of biodiversity must be effectively communicated to managers and incorporated into ecosystem approaches for management of GoMA living marine resources.
Resumo:
The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (~200 km**2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and decline as well as the processes that drive it. This study demonstrates clear benefits over traditional seagrass mapping and monitoring approaches, and provides a proof of concept for the use of trend and time-series analysis of remotely sensed seagrass products to benefit current endeavours in seagrass ecology.