873 resultados para robust estimator


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The FE ('fixed effects') estimator of technical inefficiency performs poorly when N ('number of firms') is large and T ('number of time observations') is small. We propose estimators of both the firm effects and the inefficiencies, which have small sample gains compared to the traditional FE estimator. The estimators are based on nonparametric kernel regression of unordered variables, which includes the FE estimator as a special case. In terms of global conditional MSE ('mean square error') criterions, it is proved that there are kernel estimators which are efficient to the FE estimators of firm effects and inefficiencies, in finite samples. Monte Carlo simulations supports our theoretical findings and in an empirical example it is shown how the traditional FE estimator and the proposed kernel FE estimator lead to very different conclusions about inefficiency of Indonesian rice farmers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical evidence suggests that real exchange rate is characterized by the presence of near-unity and additive outliers. Recent studeis have found evidence on favor PPP reversion by using the quasi-differencing (Elliott et al., 1996) unit root tests (ERS), which is more efficient against local alternatives but is still based on least squares estimation. Unit root tests basead on least saquares method usually tend to bias inference towards stationarity when additive out liers are present. In this paper, we incorporate quasi-differencing into M-estimation to construct a unit root test that is robust not only against near-unity root but also against nonGaussian behavior provoked by assitive outliers. We re-visit the PPP hypothesis and found less evidemce in favor PPP reversion when non-Gaussian behavior in real exchange rates is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a two-step estimator for panel data models in which a binary covariate is endogenous. In the first stage, a random-effects probit model is estimated, having the endogenous variable as the left-hand side variable. Correction terms are then constructed and included in the main regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho examinou as características de carteiras compostas por ações e otimizadas segundo o critério de média-variância e formadas através de estimativas robustas de risco e retorno. A motivação para isto é a distribuição típica de ativos financeiros (que apresenta outliers e mais curtose que a distribuição normal). Para comparação entre as carteiras, foram consideradas suas propriedades: estabilidade, variabilidade e os índices de Sharpe obtidos pelas mesmas. O resultado geral mostra que estas carteiras obtidas através de estimativas robustas de risco e retorno apresentam melhoras em sua estabilidade e variabilidade, no entanto, esta melhora é insuficiente para diferenciar os índices de Sharpe alcançados pelas mesmas das carteiras obtidas através de método de máxima verossimilhança para estimativas de risco e retorno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho propomos a aplicação das noções de equilíbrio da recente literatura de desenho de mecanismo robusto com aquisição de informação endógena a um problema de divisão de risco entre dois agentes. Através deste exemplo somos capazes de motivar o uso desta noção de equilíbrio, assim como discutir os efeitos da introdu ção de uma restrição de participação que seja dependente da informação. A simplicidade do modelo nos permite caracterizar a possibilidade de implementar a alocação Pareto efiente em termos do custo de aquisição da informação. Além disso, mostramos que a precisão da informação pode ter um efeito negativo sobre a implementação da alocação efi ciente. Ao final, sao dados dois exemplos específicos de situações nas quais este modelo se aplica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a poverty profile for Brazil, based on three different sources of household data for 1996. We use PPV consumption data to estimate poverty and indigence lines. “Contagem” data is used to allow for an unprecedented refinement of the country’s poverty map. Poverty measures and shares are also presented for a wide range of population subgroups, based on the PNAD 1996, with new adjustments for imputed rents and spatial differences in cost of living. Robustness of the profile is verified with respect to different poverty lines, spatial price deflators, and equivalence scales. Overall poverty incidence ranges from 23% with respect to an indigence line to 45% with respect to a more generous poverty line. More importantly, however, poverty is found to vary significantly across regions and city sizes, with rural areas, small and medium towns and the metropolitan peripheries of the North and Northeast regions being poorest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A forte alta dos imóveis no Brasil nos últimos anos iniciou um debate sobre a possível existência de uma bolha especulativa. Dada a recente crise do crédito nos Estados Unidos, é factível questionar se a situação atual no Brasil pode ser comparada à crise americana. Considerando argumentos quantitativos e fundamentais, examina-se o contexto imobiliário brasileiro e questiona-se a sustentabilidade em um futuro próximo. Primeiramente, analisou-se a taxa de aluguel e o nível de acesso aos imóveis e também utilizou-se um modelo do custo real para ver se o mercado está em equilíbrio o não. Depois examinou-se alguns fatores fundamentais que afetam o preço dos imóveis – oferta e demanda, crédito e regulação, fatores culturais – para encontrar evidências que justificam o aumento dos preços dos imóveis. A partir dessas observações tentou-se chegar a uma conclusão sobre a evolução dos preços no mercado imobiliário brasileiro. Enquanto os dados sugerem que os preços dos imóveis estão supervalorizados em comparação ao preço dos aluguéis, há evidências de uma legítima demanda por novos imóveis na emergente classe média brasileira. Um risco maior pode estar no mercado de crédito, altamente alavancado em relação ao consumidor brasileiro. No entanto, não se encontrou evidências que sugerem mais do que uma temporária estabilização ou correção no preço dos imóveis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study semiparametric two-step estimators which have the same structure as parametric doubly robust estimators in their second step. The key difference is that we do not impose any parametric restriction on the nuisance functions that are estimated in a first stage, but retain a fully nonparametric model instead. We call these estimators semiparametric doubly robust estimators (SDREs), and show that they possess superior theoretical and practical properties compared to generic semiparametric two-step estimators. In particular, our estimators have substantially smaller first-order bias, allow for a wider range of nonparametric first-stage estimates, rate-optimal choices of smoothing parameters and data-driven estimates thereof, and their stochastic behavior can be well-approximated by classical first-order asymptotics. SDREs exist for a wide range of parameters of interest, particularly in semiparametric missing data and causal inference models. We illustrate our method with a simulation exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust Monetary Policy with the Consumption - Wealth Channel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atypical points in the data may result in meaningless e±cient frontiers. This follows since portfolios constructed using classical estimates may re°ect neither the usual nor the unusual days patterns. On the other hand, portfolios constructed using robust approaches are able to capture just the dynamics of the usual days, which constitute the majority of the business days. In this paper we propose an statistical model and a robust estimation procedure to obtain an e±cient frontier which would take into account the behavior of both the usual and most of the atypical days. We show, using real data and simulations, that portfolios constructed in this way require less frequent rebalancing, and may yield higher expected returns for any risk level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we can model the heteroskedasticity of a linear combination of the errors. We show that this assumption can be satisfied without imposing strong assumptions on the errors in common DID applications. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative inference method that relies on strict stationarity and ergodicity of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment periods. We extend our inference methods to linear factor models when there are few treated groups. We also derive conditions under which a permutation test for the synthetic control estimator proposed by Abadie et al. (2010) is robust to heteroskedasticity and propose a modification on the test statistic that provided a better heteroskedasticity correction in our simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.