920 resultados para restricted diffusion
Resumo:
Abstract Background Air pollution in São Paulo is constantly being measured by the State of Sao Paulo Environmental Agency, however there is no information on the variation between places with different traffic densities. This study was intended to identify a gradient of exposure to traffic-related air pollution within different areas in São Paulo to provide information for future epidemiological studies. Methods We measured NO2 using Palmes' diffusion tubes in 36 sites on streets chosen to be representative of different road types and traffic densities in São Paulo in two one-week periods (July and August 2000). In each study period, two tubes were installed in each site, and two additional tubes were installed in 10 control sites. Results Average NO2 concentrations were related to traffic density, observed on the spot, to number of vehicles counted, and to traffic density strata defined by the city Traffic Engineering Company (CET). Average NO2concentrations were 63μg/m3 and 49μg/m3 in the first and second periods, respectively. Dividing the sites by the observed traffic density, we found: heavy traffic (n = 17): 64μg/m3 (95% CI: 59μg/m3 – 68μg/m3); local traffic (n = 16): 48μg/m3 (95% CI: 44μg/m3 – 52μg/m3) (p < 0.001). Conclusion The differences in NO2 levels between heavy and local traffic sites are large enough to suggest the use of a more refined classification of exposure in epidemiological studies in the city. Number of vehicles counted, traffic density observed on the spot and traffic density strata defined by the CET might be used as a proxy for traffic exposure in São Paulo when more accurate measurements are not available.
Resumo:
Abstract Background Considering the increasing use of polymyxins to treat infections due to multidrug resistant Gram-negative in many countries, it is important to evaluate different susceptibility testing methods to this class of antibiotic. Methods Susceptibility of 109 carbapenem-resistant P. aeruginosa to polymyxins was tested comparing broth microdilution (reference method), disc diffusion, and Etest using the new interpretative breakpoints of Clinical and Laboratory Standards Institute. Results Twenty-nine percent of isolates belonged to endemic clone and thus, these strains were excluded of analysis. Among 78 strains evaluated, only one isolate was resistant to polymyxin B by the reference method (MIC: 8.0 μg/mL). Very major and major error rates of 1.2% and 11.5% were detected comparing polymyxin B disc diffusion with the broth microdilution (reference method). Agreement within 1 twofold dilution between Etest and the broth microdilution were 33% for polymyxin B and 79.5% for colistin. One major error and 48.7% minor errors were found comparing polymyxin B Etest with broth microdilution and only 6.4% minor errors with colistin. The concordance between Etest and the broth microdilution (reference method) was respectively 100% for colistin and 90% for polymyxin B. Conclusion Resistance to polymyxins seems to be rare among hospital carbapenem-resistant P. aeruginosa isolates over a six-year period. Our results showed, using the new CLSI criteria, that the disc diffusion susceptibility does not report major errors (false-resistant results) for colistin. On the other hand, showed a high frequency of minor errors and 1 very major error for polymyxin B. Etest presented better results for colistin than polymyxin B. Until these results are reproduced with a large number of polymyxins-resistant P. aeruginosa isolates, susceptibility to polymyxins should be confirmed by a reference method.
Resumo:
Abstract Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available.
Resumo:
Electrospinning is used to produce fibers in the nanometer range by stretching a polymeric jet using electric fields of high magnitude. Chitosan is an abundant natural polymer that can be used to obtain biocompatible nanostructured membranes. The objectives of this work were to obtain nanostructured membranes based on blends of chitosan and polyoxyethylene (PEO), and evaluate their thermal and morphological properties, as well as their in vitro biocompatibility by agar diffusion cytotoxicity tests for three different cell lines. A nanostructured fibrous membrane with fiber diameters in the order of 200 nm was obtained, which presented a rough surface and thickness ranging from one to two millimeters. The results of the cytotoxicity tests evidenced that the chitosan/PEO membranes are non-toxic to the cells studied in this work. Further, the electrospinning technique was effective in obtaining nanostructured chitosan/PEO membranes, which showed biocompatibility according to in vitro preliminary tests using the cell lines.
Resumo:
The influence of curing tip distance and storage time in the kinetics of water diffusion (water sorption-W SP, solubility-W SB, and net water uptake) and color stability of a composite were evaluated. Composite samples were polymerized at different distances (5, 10, and 15 mm) and compared to a control group (0 mm). After desiccation, the specimens were stored in distilled water to evaluate the water diffusion over a 120-day period. Net water uptake was calculated (sum of WSP and WSB). The color stability after immersion in a grape juice was compared to distilled water. Data were submitted to three-way ANOVA/Tukey's test (α = 5%). The higher distances caused higher net water uptake (p < 0.05). The immersion in the juice caused significantly higher color change as a function of curing tip distance and the time (p < 0.05). The distance of photoactivation and storage time provide the color alteration and increased net water uptake of the resin composite tested.
Resumo:
Diffusion is a common phenomenon in nature and generally is associated with a system trying to reach a local or a global equilibrium state, as a result of highly irregular individual particle motion. Therefore it is of fundamental importance in physics, chemistry and biology. Particle tracking in complex fluids can reveal important characteristics of its properties. In living cells, we coat the microbead with a peptide (RGD) that binds to integrin receptors at the plasma membrane, which connects to the CSK. This procedure is based on the hypothesis that the microsphere can move only if the structure where it is attached move as well. Then, the observed trajectory of microbeads is a probe of the cytoskeleton (CSK), which is governed by several factors, including thermal diffusion, pressure gradients, and molecular motors. The possibility of separating the trajectories into passive and active diffusion may give information about the viscoelasticity of the cell structure and molecular motors activity. And also we could analyze the motion via generalized Stokes-Einstein relation, avoiding the use of any active techniques. Usually a 12 to 16 Frames Per Second (FPS) system is used to track the microbeads in cell for about 5 minutes. Several factors make this FPS limitation: camera computer communication, light, computer speed for online analysis among others. Here we used a high quality camera and our own software, developed in C++ and Linux, to reach high FPS. Measurements were conducted with samples for 10£ and 20£ objectives. We performed sequentially images with different intervals, all with 2 ¹s exposure. The sequences of intervals are in milliseconds: 4 5 ms (maximum speed) 14, 25, 50 and 100 FPS. Our preliminary results highlight the difference between passive and active diffusion, since the passive diffusion is represented by a Gaussian in the distribution of displacements of the center of mass of individual beads between consecutive frames. However, the active process, or anomalous diffusion, shows as long tails in the distribution of displacements.
Resumo:
A detailed numerical simulation of ethanol turbulent spray combustion on a rounded jet flame is pre- sented in this article. The focus is to propose a robust mathematical model with relatively low complexity sub- models to reproduce the main characteristics of the cou- pling between both phases, such as the turbulence modulation, turbulent droplets dissipation, and evaporative cooling effect. A RANS turbulent model is implemented. Special features of the model include an Eulerian– Lagrangian procedure under a fully two-way coupling and a modified flame sheet model with a joint mixture fraction– enthalpy b -PDF. Reasonable agreement between measured and computed mean profiles of temperature of the gas phase and droplet size distributions is achieved. Deviations found between measured and predicted mean velocity profiles are attributed to the turbulent combustion modeling adopted
Resumo:
Programa de doctorado de oceanografía
Resumo:
[ES]Se considera un modelo de reacción-difusión para dos reactantes en presencia de un tercero, que actúa de catalizador. La escala temporal para el catalizador se compara con la de los reactantes y los coeficientes de difusión dependen solamente de la concentración en el estado de equilibrio del catalizador. Se realizan experimentos para diferentes cinéticas
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Resumo:
In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.