917 resultados para reproductive efficiency index


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproductive isolation between closely related species is often incomplete. The Western honey bee, Apis mellifera, and the Eastern hive bee, A. cerana have been allopatric for millions of years, but are nonetheless similar in morphology and behaviour. During the last century the two species were brought into contact anthropogenically, providing potential opportunities for interspecific matings. Hybrids between A. mellifera and A. cerana are inviable, so natural interspecific matings are of concern because they may reduce the viability of A. cerana and A. mellifera populations – two of the world's most important pollinators. We examined the mating behaviour of A. mellifera and A. cerana queens and drones from Caoba Basin, China and Cairns, Australia. Drone mating flight times overlap in both areas. Analysis of the spermathecal contents of queens with species-specific genetic markers indicated that in Caoba Basin, 14% of A. mellifera queens mated with at least one A. cerana male, but we detected no A. cerana queens that had mated with A. mellifera males. Similarly, in Cairns, no A. cerana queens carried A. mellifera sperm, but one third of A. mellifera queens had mated with at least one A. cerana male. No hybrid embryos were detected in eggs laid by interspecifically-mated A. mellifera queens in either location. However A. mellifera queens artificially inseminated with A. cerana sperm produced inviable hybrid eggs, or unfertilised drones. This suggests that reproductive interference will impact the viability of honey bee populations wherever A. cerana and A. mellifera are in contact. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: The aim was to investigate whether the sleep practices in early childhood education (ECE) settings align with current evidence on optimal practice to support sleep. Background: Internationally, scheduled sleep times are a common feature of daily schedules in ECE settings, yet little is known about the degree to which care practices in these settings align with the evidence regarding appropriate support of sleep. Methods: Observations were conducted in 130 Australian ECE rooms attended by preschool children (Mean = 4.9 years). Of these rooms, 118 had daily scheduled sleep times. Observed practices were scored against an optimality index, the Sleep Environment and Practices Optimality Score, developed with reference to current evidence regarding sleep scheduling, routines, environmental stimuli, and emotional climate. Cluster analysis was applied to identify patterns and prevalence of care practices in the sleep time. Results: Three sleep practices types were identified. Supportive rooms (36%) engaged in practices that maintained regular schedules, promoted routine, reduced environmental stimulation, and maintained positive emotional climate. The majority of ECE rooms (64%), although offering opportunity for sleep, did not engage in supportive practices: Ambivalent rooms (45%) were emotionally positive but did not support sleep; Unsupportive rooms (19%) were both emotionally negative and unsupportive in their practices. Conclusions: Although ECE rooms schedule sleep time, many do not adopt practices that are supportive of sleep. Our results underscore the need for education about sleep supporting practice and research to ascertain the impact of sleep practices in ECE settings on children’s sleep health and broader well-being.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rarely is it possible to obtain absolute numbers in free-ranging populations and although various direct and indirect methods are used to estimate abundance, few are validated against populations of known size. In this paper, we apply grounding, calibration and verification methods, used to validate mathematical models, to methods of estimating relative abundance. To illustrate how this might be done, we consider and evaluate the widely applied passive tracking index (PTI) methodology. Using published data, we examine the rationality of PTI methodology, how conceptually animal activity and abundance are related and how alternative methods are subject to similar biases or produce similar abundance estimates and trends. We then attune the method against populations representing a range of densities likely to be encountered in the field. Finally, we compare PTI trends against a prediction that adjacent populations of the same species will have similar abundance values and trends in activity. We show that while PTI abundance estimates are subject to environmental and behavioural stochasticity peculiar to each species, the PTI method and associated variance estimate showed high probability of detection, high precision of abundance values and, generally, low variability between surveys, and suggest that the PTI method applied using this procedure and for these species provides a sensitive and credible index of abundance. This same or similar validation approach can and should be applied to alternative relative abundance methods in order to demonstrate their credibility and justify their use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal–stomatal traits, leaf internal anatomy, and physiological performance.• Methods: Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Key results: Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examined whether a specific property of cell microstructures may be useful as a biomarker of aging. Specifically, the association between age and changes of cellular structures reflected in electrophoretic mobility of cell nuclei index (EMN index) values across the adult lifespan was examined. This report considers findings from cross sections of females (n = 1273) aged 18–98 years, and males (n = 506) aged 19–93 years. A Biotest apparatus was used to perform intracellular microelectrophoresis on buccal epithelial cells collected from each individual. EMN index was calculated on the basis of the number of epithelial cells with mobile nuclei in reference to the cells with immobile nuclei per 100 cells. Regression analyses indicated a significant negative association between EMN index value and age for men (r = −0.71, p < 0.001) and women (r = −0.60, p < 0.001); demonstrating a key requirement that must be met by a biomarker of aging. The strength of association observed between EMN index and age for both men and women was encouraging and supports the potential use of EMN index for determining a biological age of an individual (or a group). In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. EMN index has demonstrated potential to meet criteria proposed for biomarkers of aging and further investigations are necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cascabela thevetia (L.) Lippold (Apocynaceae) is an invasive woody weed that has formed large infestations at several locations in northern Australia. Understanding the reproductive biology of C. thevetia is vital to its management. This paper reports results of a shade house experiment that determined the effects of light conditions (100% or 30% of natural light) and plant densities (one, two, four or eight plants per plot) on the growth, time to flowering and seed formation, and monthly pod production of two C. thevetia biotypes (peach and yellow). Shaded plants were significantly larger when they reached reproductive maturity than plants grown under natural light. However, plants grown under natural light flowered earlier (268 days compared with 369 days) and produced 488 more pods per pot (a 5-fold increase) over 3 years. The yellow biotype was slightly taller at reproductive maturity but significantly taller and with significantly greater aboveground biomass at the end of the study. Both biotypes flowered at a similar time under natural light and low plant densities but the yellow biotype was quicker to seed (478 versus 498 days), produced significantly more pods (364 versus 203 pods) and more shoot growth (577 g versus 550 g) than the peach biotype over 3 years. Higher densities of C. thevetia tended to significantly reduce the shoot and root growth by 981 g and 714 g per plant across all light conditions and biotypes over 3 years and increase the time taken to flower by 140 days and produce seeds by 184 days. For land managers trying to prevent establishment of C. thevetia or to control seedling regrowth once initial infestations have been treated, this study indicates that young plants have the potential to flower and produce seeds within 268 and 353 days, respectively. However, with plant growth and reproduction most likely to be slower under field conditions, annual surveillance and control activities should be sufficient to find and treat plants before they produce seeds and replenish soil seed banks. The most at-risk part of the landscape may be open areas that receive maximum sunlight, particularly within riparian habitats where plants would consistently have more favourable soil moisture conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide range of models used in agriculture, ecology, carbon cycling, climate and other related studies require information on the amount of leaf material present in a given environment to correctly represent radiation, heat, momentum, water, and various gas exchanges with the overlying atmosphere or the underlying soil. Leaf area index (LAI) thus often features as a critical land surface variable in parameterisations of global and regional climate models, e.g., radiation uptake, precipitation interception, energy conversion, gas exchange and momentum, as all areas are substantially determined by the vegetation surface. Optical wavelengths of remote sensing are the common electromagnetic regions used for LAI estimations and generally for vegetation studies. The main purpose of this dissertation was to enhance the determination of LAI using close-range remote sensing (hemispherical photography), airborne remote sensing (high resolution colour and colour infrared imagery), and satellite remote sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly used light extinction models are applied at all levels of optical observations. For the sake of comparative analysis, LAI was further determined using statistical relationships between spectral vegetation index (SVI) and ground based LAI. The study areas of this dissertation focus on two regions, one located in Taita Hills, South-East Kenya characterised by tropical cloud forest and exotic plantations, and the other in Gatineau Park, Southern Quebec, Canada dominated by temperate hardwood forest. The sampling procedure of sky map of gap fraction and size from hemispherical photographs was proven to be one of the most crucial steps in the accurate determination of LAI. LAI and clumping index estimates were significantly affected by the variation of the size of sky segments for given zenith angle ranges. On sloping ground, gap fraction and size distributions present strong upslope/downslope asymmetry of foliage elements, and thus the correction and the sensitivity analysis for both LAI and clumping index computations were demonstrated. Several SVIs can be used for LAI mapping using empirical regression analysis provided that the sensitivities of SVIs at varying ranges of LAI are large enough. Large scale LAI inversion algorithms were demonstrated and were proven to be a considerably efficient alternative approach for LAI mapping. LAI can be estimated nonparametrically from the information contained solely in the remotely sensed dataset given that the upper-end (saturated SVI) value is accurately determined. However, further study is still required to devise a methodology as well as instrumentation to retrieve on-ground green leaf area index . Subsequently, the large scale LAI inversion algorithms presented in this work can be precisely validated. Finally, based on literature review and this dissertation, potential future research prospects and directions were recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F2 population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under 'natural' vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Administration of rabbit antiserum to ovine luteinizing hormone to immature hamsters and guinea-pigs resulted in a significant decrease in the weights of testes, seminal vesicle and ventral prostate. The author wishes to thank Prof. N.R. Moudgal for his interest and Family Planning Foundation for financial assistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the reproductive biology of Calotropis procera (Aiton) W.T. Aiton, an invasive weed of northern Australia, is critical for development of effective management strategies. Two experiments are reported on. In Experiment 1 seed longevity of C. procera seeds, exposed to different soil type (clay and river loam), pasture cover (present and absent) and burial depth (0, 2.5, 10 and 20 cm) treatments were examined. In Experiment 2 time to reach reproductive maturity was studied. The latter experiment included its sister species, C. gigantea (L.) W.T. Aiton, for comparison and two separate seed lots were tested in 2009 and 2012 to determine if exposure to different environmental conditions would influence persistence. Both seed lots demonstrated a rapid decline in viability over the first 3 months and declined to zero between 15 and 24 months after burial. In Experiment 1, longevity appeared to be most influenced by rainfall patterns and associated soil moisture, burial depth and soil type, but not the level of pasture cover. Experiment 2 showed that both C. procera and C. gigantea plants could flower once they had reached an average height of 85 cm. However, they differed significantly in terms of basal diameter at first flowering with C. gigantea significantly smaller (31 mm) than C. procera (45 mm). On average, C. gigantea flowered earlier (125 days vs 190 days) and set seed earlier (359 days vs 412 days) than C. procera. These results suggest that, under similar conditions to those that prevailed in the present studies, land managers could potentially achieve effective control of patches of C. procera in 2 years if they are able to kill all original plants and treat seedling regrowth frequently enough to prevent it reaching reproductive maturity. This suggested control strategy is based on the proviso that replenishment of the seed bank is not occurring from external sources (e.g. wind and water dispersal).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Divergent genetic selection for wool growth as a single trait has led to major changes in sheep physiology and metabolism, including variations in rumen microbial protein production and uptake of α-amino nitrogen in portal blood. This study was conducted to determine if sheep with different genetic merit for wool growth exhibit distinct rumen bacterial diversity. Eighteen Merino wethers were separated into groups of contrasting genetic merit for clean fleece weight (CFW; low: WG− and high: WG+) and fed a blend of oaten and lucerne chaff diet at two levels of intake (LOI; 1 or 1.5 times maintenance energy requirements) for two seven-week periods in a crossover design. Bacterial diversity in rumen fluid collected by esophageal intubation was characterized using 454 amplicon pyrosequencing of the V3/V4 regions of the 16S rRNA gene. Bacterial diversity estimated by Phylogenetic distance, Chao1 and observed species did not differ significantly with CFW or LOI; however, the Shannon diversity index differed (P=0.04) between WG+ (7.67) and WG− sheep (8.02). WG+ animals had a higher (P=0.03) proportion of Bacteroidetes (71.9% vs 66.5%) and a lower (P=0.04) proportion of Firmicutes (26.6% vs 31.6%) than WG− animals. Twenty-four specific operational taxonomic units (OTUs), belonging to the Firmicutes and Bacteroidetes phyla, were shared among all the samples, whereas specific OTUs varied significantly in presence/abundance (P<0.05) between wool genotypes and 50 varied (P<0.05) with LOI. It appears that genetic selection for fleece weight is associated with differences in rumen bacterial diversity that persist across different feeding levels. Moderate correlations between seven continuous traits, such as methane production or microbial protein production, and the presence and abundance of 17 OTUs were found, indicating scope for targeted modification of the microbiome to improve the energetic efficiency of rumen microbial synthesis and reduce the greenhouse gas footprint of ruminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This ‘how to’ guide provides readers with method to measure fan performance and energy efficiency of fans installed in meat chicken sheds. These methods are also useful for identifying fans that are under-performing or require maintenance. For more information about fan energy efficiency, a complementary report is available on the RIRDC website ‘Review of fan efficiency in meat chicken sheds’ (RIRDC Publication No. 15/018). A spreadsheet was also developed under this project for comparing and ranking fans against others in terms of energy efficiency, air flow and costs (‘Tunnel Ventilation Fan Comparison Spreadsheet’), and is available on the RIRDC website.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progress in crop improvement is limited by the ability to identify favourable combinations of genotypes (G) and management practices (M) in relevant target environments (E) given the resources available to search among the myriad of possible combinations. To underpin yield advance we require prediction of phenotype based on genotype. In plant breeding, traditional phenotypic selection methods have involved measuring phenotypic performance of large segregating populations in multi-environment trials and applying rigorous statistical procedures based on quantitative genetic theory to identify superior individuals. Recent developments in the ability to inexpensively and densely map/sequence genomes have facilitated a shift from the level of the individual (genotype) to the level of the genomic region. Molecular breeding strategies using genome wide prediction and genomic selection approaches have developed rapidly. However, their applicability to complex traits remains constrained by gene-gene and gene-environment interactions, which restrict the predictive power of associations of genomic regions with phenotypic responses. Here it is argued that crop ecophysiology and functional whole plant modelling can provide an effective link between molecular and organism scales and enhance molecular breeding by adding value to genetic prediction approaches. A physiological framework that facilitates dissection and modelling of complex traits can inform phenotyping methods for marker/gene detection and underpin prediction of likely phenotypic consequences of trait and genetic variation in target environments. This approach holds considerable promise for more effectively linking genotype to phenotype for complex adaptive traits. Specific examples focused on drought adaptation are presented to highlight the concepts.