929 resultados para recombinant MOMP
Resumo:
The application of nucleic acid probes, in the detection of pathogenic micro-organisms, has become an integral part of diagnostic technologies. In this study, Plasmodium vivax-specific DNA probes have been identified by carrying out genomic subtractive hybridization. In this approach, the recombinant clones from a P. vivax genomic library are screened with radiolabelled human and P. falciparum DNA. The colonies which react with labelled P. falciparum and human DNA are eliminated and those which do not produce any autoradiographic signal have been subjected to further screening procedures. Three Fl vivax specific DNA probes have been obtained by these repeated screenings. Further analyses indicate that these probes are specific and sensitive enough to detect P. vivax infection in clinical blood samples when used in a non-radioactive DNA hybridization assay. (C) 1995 Academic Press Limited
Resumo:
The present study was undertaken to determine the role of glutathione peroxidase3 (gpx3) in phospholipid protection in cells. Wild-type (WT) cells showed an overall increase in phospholipids upon 50 mu M cadmium (Cd)-treatment, whereas an untreated gpx3 Delta strain showed a drastic reduction in overall phospholipids which was further reduced with 50 mu M Cd. In WT cells, Cd-exposure increased the short chain fatty acids and decreased the unsaturated fatty acids and the magnitude was high in Cd-treated gpx3 Delta cells. Purified recombinant gpx3p showed higher activity with phospholipid hydroperoxides than shorter hydroperoxides. An increase in gpx activity was observed in Cd-treated WT cells and no such alteration was observed in gpx3 Delta. WT cells treated with Cd showed an increase in MDA over untreated, while untreated gpx3 Delta cells themselves showed a higher level of MDA which was further enhanced with Cd-treatment. Iron, zinc and calcium levels were significantly altered in WT and gpx3 Delta cells during Cd-treatment.
Resumo:
Flaviviruses generate their structural and nonstructural proteins by proteolytic processing of a single large polyprotein precursor. These proteolytic events are brought about both by host cell signalase and a virally encoded protease. The virally encoded proteolytic activity has been shown to reside within the nonstructural protein 3 (NS3) and requires the product of the nonstructural 2b (NS2b) gene. In order to obtain sufficient quantities of pure NS2b and NS3 proteins for kinetic analysis, we have expressed both these proteins in recombinant systems as fusions to glutathione S-transferase (GST). The fusion constructs were driven by the strong bacteriophage T7 promoter. Transfection of these constructs into the African green monkey kidney cell line CV-1 previously infected with a recombinant vaccinia virus expressing the T7 RNA polymerase resulted in synthesis of the fusion proteins. Both the fusion proteins could be purified to homogeneity in a single step using a glutathione agarose affinity matrix.
Resumo:
Gene manipulation in Mycobacterium tuberculosis has been slow in coming of age owing to the inherent difficulties associated with working on this aerosol-transmitted pathogen, in addition to the paucity of molecular tools such as plasmids and transposons. One of the early approaches to overcome these difficulties was the development of phasmids, which combined the properties of phages and plasmids and allowed introduction of recombinant genes into mycobacteria. The lone plasmid pAL5000 of mycobacteria has been exploited to its fullest potential in the construction of a plethora of vectors. Above all, the single most important achievement has been the development of elegant and innovative approaches to overcome the problem of illegitimate recombination which threatened the success of allelic-exchange mutagenesis in the slow-growing pathogenic mycobacterial species. In this review I discuss the current status of conditionally replicating plasmid and transposon vectors and their application in generating targeted mutations in mycobacteria.
Resumo:
Crystal structures of the active-site mutants D99A and H48Q and the calcium-loop mutant D49E of bovine phospholipase A(2) have been determined at around 1.9 Angstrom resolution. The D99A mutant is isomorphous to the orthorhombic recombinant enzyme, space group P2(1)2(1)2(1), The H48Q and the calcium-loop mutant D49E are isomorphous to the trigonal recombinant enzyme, space group P3(1)21, The two active-site mutants show no major structural perturbations. The structural water is absent in D99A and, therefore, the hydrogen-bonding scheme is changed. In H48Q, the catalytic water is present and hydrogen bonded to Gln48 N, but the second water found in native His48 is absent. In the calcium-loop mutant D49E, the two water molecules forming the pentagonal bipyramid around calcium are absent and only one O atom of the Glu49 carboxylate group is coordinated to calcium, resulting in only four ligands.
Resumo:
A chimeric channel, 4N/1, was generated from two outwardly rectifying K+ channels by linking the N-terminal cytoplasmic domain of hKv1.4 (N terminus ball and chain of hKv1.4) with the transmembrane body of hKvl.l (Delta 78N1 construct of hKvl.l). The recombinant channel has properties similar to the six transmembrane inward rectifiers and opens on hyperpolarization with a threshold of activation at -90 mV. Outward currents are seen on depolarization provided the channel is first exposed to a hyperpolarizing pulse of -100mV or more. Hyperpolarization at and beyond -130mV provides evidence of channel deactivation. Delta 78N1 does not show inward currents on hyperpolarization but does open on depolarizing from -80mV with characteristics similar to native hKvl.l. The outward currents seen in both Delta 78N1 and 4N/1 inactivate slowly at rates consistent with C-type inactivation. The inward rectification of the 4N/1 chimera is consistent with the inactivation gating mechanism. This implies that the addition of the N-terminus from hKv1.4 to hKvl.l shifts channel activation to hyperpolarizing potentials. These results suggest a mechanism involving the N-terminal cytoplasmic domain for conversion of outward rectifiers to inward rectifiers. (C) 1999 Lippincott Williams & Wilkins.
Resumo:
Monoclonal antibodies (mAbs) against secreted hemagglutinin (H) protein of rinderpest virus (RPV) expressed by a recombinant baculovirus were generated to characterize the antigenic sites on H protein and regions of functional significance. Three of the mAbs displayed hemagglutination inhibition activity and these mAbs were unable to neutralize virus infectivity. Western immunoblot analysis of overlapping deletion mutants indicated that three mAbs recognize antigenic regions at the extreme carboxy terminus (between amino acids 569 and 609) and the fourth mAb between amino acids 512 and 568. Using synthetic peptides, aa 569-577 and 575-583 were identified as the epitopes for E2G4 and D2F4, respectively. The epitopic domains of A12A9 and E2B6 mAbs were mapped to regions encompassing aa 527-554 and 588-609. Two epitopes spanning the extreme carboxy terminal region of aa 573 to 587 and 588 to 609 were shown to be immunodominant employing a competitive ELISA with polyclonal sera form vaccinated cattle. The D2F4 mAb which recognizes a unique epitope on RPV-H is not present on the closely related peste des petits ruminant virus FIN protein and this mAb could serve as a tool in the seromonitoring program after rinderpest vaccination. (C) 2002 Elsevier Science (USA).
Resumo:
Background: Lymphatic filariasis is a painful and profoundly disfiguring disease. Infection is usually acquired in childhood but its visible manifestations occur later in life, causing temporary or permanent disability. The importance of developing effective assays to diagnose, monitor and evaluate human lymphatic filariasis has been emphasized by the WHO. Methods: High-affinity monoclonal antibodies (mAbs) specific for recombinant filarial antigen WbSXP-1 were developed. An ELISA based capture assay using monoclonal and polyclonal antibodies for WbSXP-1 was used for detection of circulating filarial antigen. Results: High-affinity monoclonal antibodies (mAbs) were developed that specifically binds both W. bancrofti and B. malayi mf antigens. Two mAbs (1F6H3 and 2E12E3) of subclass IgG2a and IgM showed high affinity, avidity and reactivity to recombinant and mf native antigen. Both the mAbs were used in combination as capture antibodies and polyclonal as detection antibody to develop the assay. The assay showed very high sensitivity towards W. bancrofti mf positive samples compared to endemic normal samples (P<0.0001). Conclusion: A capture assay using high-affinity monoclonal antibodies for WbSXP-1 was developed for the detection of filarial circulating antigen in clinical samples from bancroftian infection. Besides, this would also help in epidemiological studies in endemic areas of filarial infections. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis.
Resumo:
Ever since lysozyme was discovered by Fleming in 1922, this protein has emerged as a model for investigations on protein structure and function. Over the years, several high-resolution structures have yielded a wealth of structural data on this protein. Extensive studies on folding of lysozyme have shown how different regions of this protein dynamically interact with one another. Data is also available from numerous biotechnological studies wherein lysozyme has been employed as a model protein for recovering active recombinant protein from inclusion bodies using small molecules like L-arginine. A variety of conditions have been developed in vitro to induce fibrillation in hen lysozyme. They include (a) acidic pH at elevated temperature, (b) concentrated solutions of ethanol, (c) moderate concentrations of guanidinium hydrochloride at moderate temperature, and (d) alkaline pH at room temperature. This review aims to bring together similarities and differences in aggregation mechanisms, morphology of aggregates, and related issues that arise using the different conditions mentioned above to improve our understanding. The alkaline pH condition (pH 12.2), discovered and studied extensively in our lab, shall receive special attention. More than a decade ago, it was revealed that mutations in human lysozyme can cause accumulation of large quantities of amyloid in liver, kidney, and other regions of gastrointestinal tract. Understanding the mechanism of lysozyme aggregation will probably have therapeutic implications for the treatment of systemic nonneuropathic amyloidosis. Numerous studies have begun to focus attention on inhibition of lysozyme aggregation using antibody or small molecules. The enzymatic activity of lysozyme presents a convenient handle to quantify the native population of lysozyme in a sample where aggregation has been inhibited. The rich information available on lysozyme coupled with the multiple conditions that have been successful in inducing/inhibiting its aggregation in vitro makes lysozyme an ideal model protein to investigate amyloidogenesis.
Resumo:
A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3: NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the Delta N72 and Delta N94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of Delta N94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion-and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. Delta N72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions.
Resumo:
Acetate kinase (AckA) catalyzes the reversible transfer of a phosphate group from acetyl phosphate to ADP, generating acetate and ATP, and plays a central role in carbon metabolism. In the present work, the gene corresponding to AckA from Salmonella typhimurium (StAckA) was cloned in the IPTG-inducible pRSET C vector, resulting in the attachment of a hexahistidine tag to the N-terminus of the expressed enzyme. The recombinant protein was overexpressed, purified and crystallized in two different crystal forms using the microbatch-under-oil method. Form I crystals diffracted to 2.70 angstrom resolution when examined using X-rays from a rotating-anode X-ray generator and belonged to the monoclinic space group C2, with unit-cell parameters a = 283.16, b = 62.17, c = 91.69 angstrom, beta = 93.57 degrees. Form II crystals, which diffracted to a higher resolution of 2.35 angstrom on the rotating-anode X-ray generator and to 1.90 angstrom on beamline BM14 of the ESRF, Grenoble, also belonged to space group C2 but with smaller unit-cell parameters (a = 151.01, b = 78.50, c = 97.48 angstrom, beta = 116.37 degrees). Calculation of Matthews coefficients for the two crystal forms suggested the presence of four and two protomers of StAckA in the asymmetric units of forms I and II, respectively. Initial phases for the form I diffraction data were obtained by molecular replacement using the coordinates of Thermotoga maritima AckA (TmAckA) as the search model. The form II structure was phased using a monomer of form I as the phasing model. Inspection of the initial electron-density maps suggests dramatic conformational differences between residues 230 and 300 of the two crystal forms and warrants further investigation.
Resumo:
Groundnut bud necrosis virus belongs to the genus Tospovirus, infects a wide range of crop plants and causes severe losses. To understand the role of the nucleocapsid protein in the viral life cycle, the protein was overexpressed in E. coli and purified by Ni-NTA chromatography. The purified N protein was well folded and was predominantly alpha-helical. Deletion analysis revealed that the C-terminal unfolded region of the N protein was involved in RNA binding. Furthermore, the N protein could be phosphorylated in vitro by Nicotiana benthamiana plant sap and by purified recombinant kinases such as protein kinase CK2 and calcium-dependent protein kinase. This is the first report of phoshphorylation of a nucleocapsid protein in the family Bunyaviridae. The possible implications of the present findings for the viral life cycle are discussed.
Resumo:
In plants, fatty oils are generally stored in spherical intracellular organelles referred to as oleosomes that are covered by proteins such as oleosin. Seeds with high oil content have more oleosin than those with low oil content. However, the exact role of oleosin in oil accumulation is thus far unclear. Here, we report the isolation of a catalytically active 14 S multiprotein complex capable of acylating monoacylglycerol from the microsomal membranes of developing peanut cotyledons. Microsomal membranes from immature peanut seeds were solubilized using 8 M urea and 10 mM CHAPS. Using two-dimensional gel electrophoresis and mass spectrometry, we identified 27 proteins in the 14 S complex. The major proteins present in the 14 S complex are conarachin, the major allergen Ara h 1, and other seed storage proteins. We identified oleosin 3 as a part of the 14 S complex, which is capable of acylating monoacylglycerol. The recombinant OLE3 microsomes from Saccharomyces cerevisiae have been shown to have both a monoacylglycerol acyltransferase and a phospholipase A(2) activity. Overexpression of the oleosin 3 (OLE3) gene in S. cerevisiae resulted in an increased accumulation of diacylglycerols and triacylglycerols and decreased phospholipids. These findings provide a direct role for a structural protein (OLE3) in the biosynthesis and mobilization of plant oils.
Resumo:
Serine hydroxymethyltransferase (SHMT), a pyridoxal-5V-phosphate (PLP)-dependent enzyme catalyzes thetetrahydrofolate (H4-folate)- dependent retro-aldol cleavage of serine to form 5,10-methylene H4-folate and glycine. The structure–function relationship of SHMT wasstudied in our laboratory initially by mutation of residues that are conserved in all SHMTs and later by structure-based mutagenesis of residues located in the active site. The analysis of mutants showed that K71, Y72, R80, D89, W110, S202, C203, H304, H306 and H356 residues are involved in maintenance of the oligomeric structure. The mutation of D227, a residue involved in charge relay system, led to the formation of inactive dimers, indicating that this residue has a role in maintaining the tetrameric structure and catalysis. E74, a residue appropriately positioned in the structure of the enzyme to carry out proton abstraction, was shown by characterization of E74Q and E74K mutants to be involved in conversion of the enzyme from an ‘open’ to ‘closed’ conformation rather than proton abstraction from the hydroxylgroup of serine. K256, the residue involved in the formation of Schiffs base with PLP, also plays a crucial role in the maintenance of the tetrameric structure. Mutation of R262 residue established the importance of distal interactions in facilitating catalysis and Y82 is not involved in the formaldehyde transfer via the postulated hemiacetal intermediate but plays a role in stabilizing the quinonoid intermediate.The mutational analysis of scSHMT along with the structure of recombinant Bacillus stearothermophilus SHMT and its substrate(s)complexes was used to provide evidence for a direct transfer mechanism rather than retro-aldol cleavage for the reaction catalyzed by SHMT.