983 resultados para recognition rate
Resumo:
Urea-based molecular constructs are shown for the first time to be nonlinear optically (NLO) active in solution. We demonstrate self-assembly triggered large amplification and specific anion recognition driven attenuation of the NLO activity. This orthogonal modulation along with an excellent nonlinearity-transparency trade-off makes them attractive NLO probes for studies related to weak self-assembly and anion transportation by second harmonic microscopy.
Resumo:
In an effort to study the role of strain rate response on the tribological behavior of metals, room temperature experiments were conducted by sliding commercially pure titanium and a-iron pins against an H-11 die steel flats of various surface textures. The steel flat surface textures were specifically prepared to allow for imposing varying amounts of strain rates at the contacting interface during sliding motion. In the experiments, it was observed that titanium (a harder material than iron) formed a transfer layer on H-11 steel surface textures that produced higher strain rates. In contrast, the titanium pins abraded the steel surfaces that produced lower strain rates. The iron pins were found to abrade the H-11 steel surface regardless of the surface texture characteristics. This unique tribological behavior of titanium is likely due to the fact that titanium undergoes adiabatic shear banding at high strain rates, which creates pathways for lower resistance shear planes. These shear planes lead to fracture and transfer layer formation on the surface of the steel flat, which ultimately promotes a higher strain rate of deformation at the asperity level. Iron does not undergo adiabatic shear banding and thus more naturally abrades the surfaces. Overall, the results clear indicated that a materials strain rate response can be an important factor in controlling the tribological behavior of a plastically deforming material at the asperity level. DOI: 10.1115/1.4007675]
Resumo:
We consider a complex, additive, white Gaussian noise channel with flat fading. We study its diversity order vs transmission rate for some known power allocation schemes. The capacity region is divided into three regions. For one power allocation scheme, the diversity order is exponential throughout the capacity region. For selective channel inversion (SCI) scheme, the diversity order is exponential in low and high rate region but polynomial in mid rate region. For fast fading case we also provide a new upper bound on block error probability and a power allocation scheme that minimizes it. The diversity order behaviour of this scheme is same as for SCI but provides lower BER than the other policies.
Resumo:
Acoustic modeling using mixtures of multivariate Gaussians is the prevalent approach for many speech processing problems. Computing likelihoods against a large set of Gaussians is required as a part of many speech processing systems and it is the computationally dominant phase for LVCSR systems. We express the likelihood computation as a multiplication of matrices representing augmented feature vectors and Gaussian parameters. The computational gain of this approach over traditional methods is by exploiting the structure of these matrices and efficient implementation of their multiplication.In particular, we explore direct low-rank approximation of the Gaussian parameter matrix and indirect derivation of low-rank factors of the Gaussian parameter matrix by optimum approximation of the likelihood matrix. We show that both the methods lead to similar speedups but the latter leads to far lesser impact on the recognition accuracy. Experiments on a 1138 word vocabulary RM1 task using Sphinx 3.7 system show that, for a typical case the matrix multiplication approach leads to overall speedup of 46%. Both the low-rank approximation methods increase the speedup to around 60%, with the former method increasing the word error rate (WER) from 3.2% to 6.6%, while the latter increases the WER from 3.2% to 3.5%.
Resumo:
We consider the design of a linear equalizer with a finite number of coefficients in the context of a classical linear intersymbol-interference channel with additive Gaussian noise for channel estimation. Previous literature has shown that Minimum Bit Error Rate(MBER) based detection has outperformed Minimum Mean Squared Error (MMSE) based detection. We pose the channel estimation problem as a detection problem and propose a novel algorithm to estimate the channel based on the MBER framework for BPSK signals. It is shown that the proposed algorithm reduces BER compared to an MMSE based channel estimation when used in MMSE or MBER detection.
Resumo:
In this paper, we consider a slow-fading nt ×nr multiple-input multiple-output (MIMO) channel subjected to block fading. Reliability (in terms of achieved diversity order) and rate (in number of symbols transmitted per channel use) are of interest in such channels. We propose a new precoding scheme which achieves both full diversity (nt ×nrth order diversity) as well as full rate (nt symbols per channel use) using partial channel state information at the transmitter (CSIT). The proposed scheme achieves full diversity and improved coding gain through an optimization over the choice of constellation sets. The optimization maximizes dmin2 for our precoding scheme subject to an energy constraint. The scheme requires feedback of nt - 1 angle parameter values, compared to 2ntnr real coefficients in case of full CSIT. Further, for the case of nt × 1 system, we prove that the capacity achieved by the proposed scheme is same as that achieved with full CSIT. Error rate performance results for nt = 3,4,8 show that the proposed scheme performs better than other precoding schemes in the literature; the better performance is due to the choice of the signal sets and the feedback angles in the proposed scheme.
Resumo:
We consider the speech production mechanism and the asso- ciated linear source-filter model. For voiced speech sounds in particular, the source/glottal excitation is modeled as a stream of impulses and the filter as a cascade of second-order resonators. We show that the process of sampling speech signals can be modeled as filtering a stream of Dirac impulses (a model for the excitation) with a kernel function (the vocal tract response),and then sampling uniformly. We show that the problem of esti- mating the excitation is equivalent to the problem of recovering a stream of Dirac impulses from samples of a filtered version. We present associated algorithms based on the annihilating filter and also make a comparison with the classical linear prediction technique, which is well known in speech analysis. Results on synthesized as well as natural speech data are presented.
Resumo:
In this paper, we present a fast learning neural network classifier for human action recognition. The proposed classifier is a fully complex-valued neural network with a single hidden layer. The neurons in the hidden layer employ the fully complex-valued hyperbolic secant as an activation function. The parameters of the hidden layer are chosen randomly and the output weights are estimated analytically as a minimum norm least square solution to a set of linear equations. The fast leaning fully complex-valued neural classifier is used for recognizing human actions accurately. Optical flow-based features extracted from the video sequences are utilized to recognize 10 different human actions. The feature vectors are computationally simple first order statistics of the optical flow vectors, obtained from coarse to fine rectangular patches centered around the object. The results indicate the superior performance of the complex-valued neural classifier for action recognition. The superior performance of the complex neural network for action recognition stems from the fact that motion, by nature, consists of two components, one along each of the axes.
Resumo:
Benzimidazole derivatives are well known for their antibacterial, antiviral, anticonvulsant, antihistaminic, anthelmintic and antidepressant activities. Benzimidazole's unique base-selective DNA recognition property has been studied widely. However, most of the early benzimidazole systems have been targeted towards the binding of duplex DNA. Here we have shown the evolution and progress of the design and synthesis of new benzimidazole systems towards selective recognition of the double-stranded DNA first. Then in order to achieve selective recognition of the G-quadruplex DNA and utilize their potential as future anti-cancer drug candidates, we have demonstrated their selective cytotoxicity towards the cancer cells and potent telomerase inhibition ability.
Resumo:
Size independent fracture energy and size effect on fracture energy are the key concerns for characterization of concrete fracture. Although there have been inconsistencies in results, a consensual fact is that the fracture energy from a large specimen is size independent. The fracture energy is proportional to the size of the fracture process zone (FPZ). FPZ size increases with size of the specimen, but the rate of increase of FPZ size decreases with increase in specimen size 1] implying that rate of increase of fracture energy decreases with increase in specimen size, more appropriately with increase in un-cracked ligament length. The ratio of fracture energy to the un-cracked ligament length almost becomes a constant at larger un-cracked ligament lengths. In the present study an attempt is made to obtain size independent fracture energy from fracture energy release rate. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates. Methods: Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-gamma and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29). Results: M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-gamma production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c. Conclusions: The pattern of immune target recognition is different in regard to IFN-gamma and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras.
Resumo:
In this study, the influence of tool rotation speed and feed rate on the forming limit of friction stir welded Al 6061-T651 sheets has been investigated. The forming limit curve was evaluated by limit dome height test performed on all the friction stir welded sheets. The welding trials were conducted at a tool rotation speed of 1300 and 1400 r/min and feed rate of 90 and 100 mm/min. A third trial of welding was performed at a rotational speed of 1500 r/min and feed rate 120 mm/min. It is found that with increase in the tool rotation speed, from 1300 to 1400 r/min, for a constant feed rate, the forming limit of friction stir welded blank has improved and with increase in feed rate, from 90 to 100 mm/min, for a constant tool rotation speed, it has decreased. The forming limit of friction stir welded sheets is better than unwelded sheets. The thickness gradient after forming is severe in the cases of friction stir welded blanks made at higher feed rate and lower rotation speed. The strain hardening exponent of weld (n) increases with increase in tool rotation speed and it decreases with increase in feed rate. It has been demonstrated that the change in the forming limit of friction stir welded sheets with respect to welding parameters is due to the thickness distribution severity and strain hardening exponent of the weld region during forming. There is not much variation in the dome height among the friction stir welded sheets tested. When compared with unwelded sheets, dome height of friction stir welded sheets is higher in near-plane-strain condition, but it is lesser in stretching strain paths.
Resumo:
In this paper, we describe a method for feature extraction and classification of characters manually isolated from scene or natural images. Characters in a scene image may be affected by low resolution, uneven illumination or occlusion. We propose a novel method to perform binarization on gray scale images by minimizing energy functional. Discrete Cosine Transform and Angular Radial Transform are used to extract the features from characters after normalization for scale and translation. We have evaluated our method on the complete test set of Chars74k dataset for English and Kannada scripts consisting of handwritten and synthesized characters, as well as characters extracted from camera captured images. We utilize only synthesized and handwritten characters from this dataset as training set. Nearest neighbor classification is used in our experiments.
Resumo:
N-gram language models and lexicon-based word-recognition are popular methods in the literature to improve recognition accuracies of online and offline handwritten data. However, there are very few works that deal with application of these techniques on online Tamil handwritten data. In this paper, we explore methods of developing symbol-level language models and a lexicon from a large Tamil text corpus and their application to improving symbol and word recognition accuracies. On a test database of around 2000 words, we find that bigram language models improve symbol (3%) and word recognition (8%) accuracies and while lexicon methods offer much greater improvements (30%) in terms of word recognition, there is a large dependency on choosing the right lexicon. For comparison to lexicon and language model based methods, we have also explored re-evaluation techniques which involve the use of expert classifiers to improve symbol and word recognition accuracies.
Resumo:
We have benchmarked the maximum obtainable recognition accuracy on five publicly available standard word image data sets using semi-automated segmentation and a commercial OCR. These images have been cropped from camera captured scene images, born digital images (BDI) and street view images. Using the Matlab based tool developed by us, we have annotated at the pixel level more than 3600 word images from the five data sets. The word images binarized by the tool, as well as by our own midline analysis and propagation of segmentation (MAPS) algorithm are recognized using the trial version of Nuance Omnipage OCR and these two results are compared with the best reported in the literature. The benchmark word recognition rates obtained on ICDAR 2003, Sign evaluation, Street view, Born-digital and ICDAR 2011 data sets are 83.9%, 89.3%, 79.6%, 88.5% and 86.7%, respectively. The results obtained from MAPS binarized word images without the use of any lexicon are 64.5% and 71.7% for ICDAR 2003 and 2011 respectively, and these values are higher than the best reported values in the literature of 61.1% and 41.2%, respectively. MAPS results of 82.8% for BDI 2011 dataset matches the performance of the state of the art method based on power law transform.