945 resultados para rare earth ion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MELO, D. M. A. et al. Synthesis and charactezarion of lanthanum and yttrium doped Fe2O3 pigments. Cerâmica, São Paulo, v. 53, p. 79-82, 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we studied the structural and optical properties of lithium tantalate (LiTaO3) powders doped with Eu3+ ions. We have examined the different sites occupied by the rare earth ion through the correlation of the DRX data analyzed with the Rietveld method and some spectroscopic parameters derived from the Eu3+ luminescence. Adirect relation was established between the lattice parameters and the occupation fraction of Eu3+ in each LiTaO3 site. The occupation fraction was set as the relative population of Eu3+ ions for each site obtained by means of the intensity, baricenter, and the spontaneous emission coefficients of the D-5(0)-> F-7(0) transitions. We concluded that the unit cell parameter a presents the same behavior of the Eu3+ occupation fraction in Ta5+ sites as a function of the Eu3+ content in LiTaO3. The same was observed for the variation in Eu3+ occupation fraction in the Li+ site and the unit cell parameter c with the Eu3+ content. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3204967]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+ emission in the wide bandgap matrix SnO2 is observed either through a direct Er ion excitation process as well as by an indirect process, through energy transfer in samples codoped with Yb3+ ions. Electron-hole generation in the tin dioxide matrix is also used to promote rare-earth ion excitation. Photoluminescence spectra as function of temperature indicate a slight decrease in the emission intensity with temperature increase, yielding low activation energy, about 3.8meV, since the emission even at room temperature is rather considerable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In rare earth ion doped solids, a resonant non-linear refractive index, n2, appears when the laser pumps one of the ion excited states and the refractive index change is proportional to the excited state population. In these solids there are usually thermal and non-thermal lensing effects, where the non-thermal one is due to the polarizability difference, Δα, between excited and ground states of the ions. We have used the time resolved Z-scan and a mode-mismatched thermal lens technique with an Ar+ ion laser in Er+3 (20ZnF2-20SrF2-2NaF-16BaF2-6GaF3-(36 - x)InF3-xErF3, with x= 1, 2, 3 and 4 mol%) and Nd+3 (20SrF2-16BaF2-20ZnF2-2GdF3-2NaF-(40 - x)InF3-xNdF3, with x = 0.1, 0.25, 0.5-1 mol%) doped fluoroindate glasses. In both samples we found that the non-linear refraction is due to the thermal effect, while the non-thermal effect is negligible. This result indicates that in fluoride glasses Δα is very small (less than 10-26 cm3). We also measured the imaginary part of the non-linear refractive index (n″2) due to absorption saturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical characteristics of tellurite glasses containing silver nanoparticles (NPs) and the influence on the emission spectrum of Er 3+ ions were studied. The transitions 4f ↔ 4f from erbium ions, mainly the 4I13/2 → 4I15/2 transition that involve upconversion energy process, have a strongly dependence with the chemical structure of the rare earth ion. In the present work, silver nanparticles (NPs) embedded in the host vitreous material, show a significant enhance (or quenching) on the erbium fluorescence due the long-range electromagnetic interaction between the plasmon surface energy of the Ag NPs (Localized Surface Plasmon Resonance -LSPR) and the Er3+ ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through the polymeric precursor method were synthesized samples Ca0.98Sr0.01X0.01TiO3 (X= Eu3+, Sm3+ and Pr3+), which under different heat treatments were obtained with levels of distinct structural order-disorder. The synthesized materials were characterized by X-ray diffraction, confirming the obtaining of ahomogeneous material with perovskite-type orthorhombic structure. This characterization allowed evaluating the average crystallite size of the samples that varies depending on the rare-earth ion. The results of photoluminescence emission confirmed the presence of this optical phenomenon at room temperature and its relationship to the level of order-disorder structural system. The photoluminescence emission is more intense in samples annealed at 500 ° C (independent on the dopant ion), the variation of the dopant influence on the emission intensity due to charge transfer between the host and emitting rare-earth ion, where the doped with Pr3+ ion has charge transfer more efficient and hence more intense emission in the photoluminescence. Another factor that favors the optical property of the samples is the charge compensation, as it contributes to the increase in structural disorder due to formation of Ca2+ vacancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New Yb3+, Er3+ and Tm3+ doped fluoro-phosphate glasses belonging to the system NaPO3–YF3–BaF2–CaF2 and containing up to 10 wt% of rare-earth ion fluorides were prepared and characterized by differential scanning calorimetry, absorption spectroscopy and up-conversion emission spectroscopy under excitation with a 975 nm laser diode. Transparent and homogeneous glass-ceramics have been reproducibly obtained with a view to manage the red, green and blue emission bands and generate white light. X-ray diffraction as well as electron microscopy techniques have confirmed the formation of fluorite-type cubic nanocrystals at the beginning of the crystallization process while complex nanocrystalline phases are formed after a longer heat-treatment. The prepared glass-ceramics exhibit high optical transparency even after 170 h of thermal treatment. An improvement of up-conversion emission intensity – from 10 to 160 times larger – was measured in the glass-ceramics when compared to the parent glass, suggesting an important incorporation of the rare-earth ions into the crystalline phase(s). The involved mechanisms and lifetime were described in detail as a function of heat-treatment time. Finally, a large range of designable color rendering (from orange to turquoise through white) can be observed in these materials by controlling the laser excitation power and the crystallization rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)