919 resultados para random projection
Resumo:
Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.
Resumo:
Background: Meat quality involves many traits, such as marbling, tenderness, juiciness, and backfat thickness, all of which require attention from livestock producers. Backfat thickness improvement by means of traditional selection techniques in Canchim beef cattle has been challenging due to its low heritability, and it is measured late in an animal's life. Therefore, the implementation of new methodologies for identification of single nucleotide polymorphisms (SNPs) linked to backfat thickness are an important strategy for genetic improvement of carcass and meat quality.Results: The set of SNPs identified by the random forest approach explained as much as 50% of the deregressed estimated breeding value (dEBV) variance associated with backfat thickness, and a small set of 5 SNPs were able to explain 34% of the dEBV for backfat thickness. Several quantitative trait loci (QTL) for fat-related traits were found in the surrounding areas of the SNPs, as well as many genes with roles in lipid metabolism.Conclusions: These results provided a better understanding of the backfat deposition and regulation pathways, and can be considered a starting point for future implementation of a genomic selection program for backfat thickness in Canchim beef cattle. © 2013 Mokry et al.; licensee BioMed Central Ltd.
Resumo:
The Brazilian Association of Simmental and Simbrasil Cattle Farmers provided 29,510 records from 10,659 Simmental beef cattle; these were used to estimate (co)variance components and genetic parameters for weights in the growth trajectory, based on multi-trait (MTM) and random regression models (RRM). The (co)variance components and genetic parameters were estimated by restricted maximum likelihood. In the MTM analysis, the likelihood ratio test was used to determine the significance of random effects included in the model and to define the most appropriate model. All random effects were significant and included in the final model. In the RRM analysis, different adjustments of polynomial orders were compared for 5 different criteria to choose the best fit model. An RRM of third order for the direct additive genetic, direct permanent environmental, maternal additive genetic, and maternal permanent environment effects was sufficient to model variance structures in the growth trajectory of the animals. The (co)variance components were generally similar in MTM and RRM. Direct heritabilities of MTM were slightly lower than RRM and varied from 0.04 to 0.42 and 0.16 to 0.45, respectively. Additive direct correlations were mostly positive and of high magnitude, being highest at closest ages. Considering the results and that pre-adjustment of the weights to standard ages is not required, RRM is recommended for genetic evaluation of Simmental beef cattle in Brazil. ©FUNPEC-RP.
Resumo:
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. © 2013 American Dairy Science Association.
Resumo:
Some machine learning methods do not exploit contextual information in the process of discovering, describing and recognizing patterns. However, spatial/temporal neighboring samples are likely to have same behavior. Here, we propose an approach which unifies a supervised learning algorithm - namely Optimum-Path Forest - together with a Markov Random Field in order to build a prior model holding a spatial smoothness assumption, which takes into account the contextual information for classification purposes. We show its robustness for brain tissue classification over some images of the well-known dataset IBSR. © 2013 Springer-Verlag.
Resumo:
Includes bibliography
Resumo:
Publicación bilingüe (Español e inglés)
Resumo:
Publicación bilingüe (Español e inglés)
Resumo:
Publicación bilingüe (Español e inglés)
Resumo:
Publicación bilingüe (Español e inglés)
Resumo:
Publicación bilingüe (Español e inglés)
Resumo:
Publicación bilingüe (Español e inglés)
Resumo:
Publicación bilingüe (Español e inglés)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT