970 resultados para raised beaches
Resumo:
Kv3.1 and Kv3.2 K+ channel proteins form similar voltage-gated K+ channels with unusual properties, including fast activation at voltages positive to −10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3.2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1–Kv3.2 current type can have functions other than facilitating high-frequency firing.
Resumo:
The recent wave of upheavals and revolts in Northern Africa and the Middle East goes back to an old question often raised by theories of collective action: does repression act as a negative or positive incentive for further mobilization? Through a review of the vast literature devoted to this question, this article aims to go beyond theoretical and methodological dead-ends. The article moves on to non-Western settings in order to better understand, via a macro-sociological and dynamic approach, the causal effects between mobilizations and repression. It pleads for a meso- and micro-level approach to this issue: an approach that puts analytical emphasis both on protest organizations and on individual activists' careers.
Resumo:
Newsletter produced by Iowa Department of Natural Resources.
Resumo:
This article originates from a panel with the above title, held at IEEE VTC Spring 2009, in which the authors took part. The enthusiastic response it received prompted us to discuss for a wider audience whether research at the physical layer (PHY) is still relevant to the field of wireless communications. Using cellular systems as the axis of our exposition, we exemplify areas where PHY research has indeed hit a performance wall and where any improvements are expected to be marginal. We then discuss whether the research directions taken in the past have always been the right choice and how lessons learned could influence future policy decisions. Several of the raised issues are subsequently discussed in greater details, e.g., the growing divergence between academia and industry. With this argumentation at hand, we identify areas that are either under-developed or likely to be of impact in coming years - hence corroborating the relevance and importance of PHY research.
Resumo:
We examine the relationship between structural social capital, resource assembly, and firm performance of entrepreneurs in Africa. We posit that social capital primarily composed of kinship or family ties helps the entrepreneur to raise resources, but it does so at a cost. Using data drawn from small firms in Kampala, Uganda, we explore how shared identity among the entrepreneur's social network moderates this relationship. A large network contributed a higher quantity of resources raised, but at a higher cost when shared identity was high. We discuss the implications of these findings for the role of family ties and social capital in resource assembly, with an emphasis on developing economies.
Resumo:
Four-lane undivided roadways in urban areas can experience a degradation of service and/or safety as traffic volumes increase. In fact, the existence of turning vehicles on this type of roadway has a dramatic effect on both of these factors. The solution identified for these problems is typically the addition of a raised median or two-way left-turn lane (TWLTL). The mobility and safety benefits of these actions have been proven and are discussed in the “Past Research” chapter of this report along with some general cross section selection guidelines. The cost and right-of-way impacts of these actions are widely accepted. These guidelines focus on the evaluation and analysis of an alternative to the typical four-lane undivided cross section improvement approach described above. It has been found that the conversion of a four-lane undivided cross section to three lanes (i.e., one lane in each direction and a TWLTL) can improve safety and maintain an acceptable level of service. These guidelines summarize the results of past research in this area (which is almost nonexistent) and qualitative/quantitative before-and-after safety and operational impacts of case study conversions located throughout the United States and Iowa. Past research confirms that this type of conversion is acceptable or feasible in some situations but for the most part fails to specifically identify those situations. In general, the reviewed case study conversions resulted in a reduction of average or 85th percentile speeds (typically less than five miles per hour) and a relatively dramatic reduction in excessive speeding (a 60 to 70 percent reduction in the number of vehicles traveling five miles per hour faster than the posted speed limit was measured in two cases) and total crashes (reductions between 17 to 62 percent were measured). The 13 roadway conversions considered had average daily traffic volumes of 8,400 to 14,000 vehicles per day (vpd) in Iowa and 9,200 to 24,000 vehicles per day elsewhere. In addition to past research and case study results, a simulation sensitivity analysis was completed to investigate and/or confirm the operational impacts of a four-lane undivided to three-lane conversion. First, the advantages and disadvantages of different corridor simulation packages were identified for this type of analysis. Then, the CORridor SIMulation (CORSIM) software was used x to investigate and evaluate several characteristics related to the operational feasibility of a four-lane undivided to three-lane conversion. Simulated speed and level of service results for both cross sections were documented for different total peak-hour traffic, access densities, and access-point left-turn volumes (for a case study corridor defined by the researchers). These analyses assisted with the identification of the considerations for the operational feasibility determination of a four -lane to three-lane conversion. The results of the simulation analyses primarily confirmed the case study impacts. The CORSIM results indicated only a slight decrease in average arterial speed for through vehicles can be expected for a large range of peak-hour volumes, access densities, and access-point left-turn volumes (given the assumptions and design of the corridor case study evaluated). Typically, the reduction in the simulated average arterial speed (which includes both segment and signal delay) was between zero and four miles per hour when a roadway was converted from a four-lane undivided to a three-lane cross section. The simulated arterial level of service for a converted roadway, however, showed a decrease when the bi-directional peak-hour volume was about 1,750 vehicles per hour (or 17,500 vehicles per day if 10 percent of the daily volume is assumed to occur in the peak hour). Past research by others, however, indicates that 12,000 vehicles per day may be the operational capacity (i.e., level of service E) of a three-lane roadway due to vehicle platooning. The simulation results, along with past research and case study results, appear to support following volume-related feasibility suggestions for four-lane undivided to three-lane cross section conversions. It is recommended that a four-lane undivided to three-lane conversion be considered as a feasible (with respect to volume only) option when bi-directional peak-hour volumes are less than 1,500 vehicles per hour, but that some caution begin to be exercised when the roadway has a bi-directional peak-hour volume between 1,500 and 1,750 vehicles per hour. At and above 1,750 vehicles per hour, the simulation indicated a reduction in arterial level of service. Therefore, at least in Iowa, the feasibility of a four-lane undivided to three-lane conversion should be questioned and/or considered much more closely when a roadway has (or is expected to have) a peak-hour volume of more than 1,750 vehicles. Assuming that 10 percent of the daily traffic occurs during the peak-hour, these volume recommendations would correspond to 15,000 and 17,500 vehicles per day, respectively. These suggestions, however, are based on the results from one idealized case xi study corridor analysis. Individual operational analysis and/or simulations should be completed in detail once a four-lane undivided to three-lane cross section conversion is considered feasible (based on the general suggestions above) for a particular corridor. All of the simulations completed as part of this project also incorporated the optimization of signal timing to minimize vehicle delay along the corridor. A number of determination feasibility factors were identified from a review of the past research, before-and-after case study results, and the simulation sensitivity analysis. The existing and expected (i.e., design period) statuses of these factors are described and should be considered. The characteristics of these factors should be compared to each other, the impacts of other potentially feasible cross section improvements, and the goals/objectives of the community. The factors discussed in these guidelines include • roadway function and environment • overall traffic volume and level of service • turning volumes and patterns • frequent-stop and slow-moving vehicles • weaving, speed, and queues • crash type and patterns • pedestrian and bike activity • right-of-way availability, cost, and acquisition impacts • general characteristics, including - parallel roadways - offset minor street intersections - parallel parking - corner radii - at-grade railroad crossings xii The characteristics of these factors are documented in these guidelines, and their relationship to four-lane undivided to three-lane cross section conversion feasibility identified. This information is summarized along with some evaluative questions in this executive summary and Appendix C. In summary, the results of past research, numerous case studies, and the simulation analyses done as part of this project support the conclusion that in certain circumstances a four-lane undivided to three-lane conversion can be a feasible alternative for the mitigation of operational and/or safety concerns. This feasibility, however, must be determined by an evaluation of the factors identified in these guidelines (along with any others that may be relevant for a individual corridor). The expected benefits, costs, and overall impacts of a four-lane undivided to three-lane conversion should then be compared to the impacts of other feasible alternatives (e.g., adding a raised median) at a particular location.
Resumo:
ABSTRACT: BACKGROUND: Local adaptation can drive the divergence of populations but identification of the traits under selection remains a major challenge in evolutionary biology. Reciprocal transplant experiments are ideal tests of local adaptation, yet rarely used for higher vertebrates because of the mobility and potential invasiveness of non-native organisms. Here, we reciprocally transplanted 2500 brown trout (Salmo trutta) embryos from five populations to investigate local adaptation in early life history traits. Embryos were bred in a full-factorial design and raised in natural riverbeds until emergence. Customized egg capsules were used to simulate the natural redd environment and allowed tracking the fate of every individual until retrieval. We predicted that 1) within sites, native populations would outperform non-natives, and 2) across sites, populations would show higher performance at 'home' compared to 'away' sites. RESULTS: There was no evidence for local adaptation but we found large differences in survival and hatching rates between sites, indicative of considerable variation in habitat quality. Survival was generally high across all populations (55% +/- 3%), but ranged from 4% to 89% between sites. Average hatching rate was 25% +/- 3% across populations ranging from 0% to 62% between sites. CONCLUSION: This study provides rare empirical data on variation in early life history traits in a population network of a salmonid, and large-scale breeding and transplantation experiments like ours provide powerful tests for local adaptation. Despite the recently reported genetic and morphological differences between the populations in our study area, local adaptation at the embryo level is small, non-existent, or confined to ecological conditions that our experiment could not capture.
Resumo:
Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.
Resumo:
RESUME La peau est un organe complex composé de deux parties distinctes: l'épiderme et le derme, séparé par une membrane basale. Dans la couche basale de l'épiderme, les melanocytes synthétisent la mélanine dans des mélanosomes. Les mélanosomes sont ensuite transportés des mélanocytes vers les kératinocytes, protégeant ainsi la peau des dégâts dus aux radiations U.V. La E-cadhérine assure l'adhésion entre les mélanocytes et les kératinocytes. Au cours de la transformation du mélanocyte en cellule malignes, les mélanocytes perdent l'expression de la E-cadhérine et, simultanément, se mettent à exprimer la N-cadhérine, ce phénomène est nommé « cadherin switch ». La perte de l'expression de la E-cadhérine permet au mélanocytes d'échapper au contrôle des kératinocytes, tandis que l'expression de la N-cadhérine promeut l'invasion métastasique des cellules de mélanome. Préalablement, nous avons trouvé qu'une fraction de la N-cadhérine était localisée les microdomaines membranaires spécialisés, enrichi en cholestérol et en glycosphingolipides, appelés « lipid rafts ». Une des particularité des « lipid rafts » est qu'ils sont riches en molécules permettant la transmission de signaux d'activation. De plus, des travaux récents rapportent qu'un sous-type de « lipid rafts » appelé caveolae pourrai contribuer à la progression tumorale. S'appuyant sur le rôle prépondérant de la N-cadhérine dans la progression du mélanome ainsi que sur sa présence dans les « lipid rafts », nous avons émis l'hypothèse que l'association de la N-cadhérine avec les « lipid rafts » pourrai contribuer à la progression du mélanome. Le but de ce projet à été de caractériser l'association de la Ncadhérine avec les « lipid rafts » au cours de la progression du mélanome. Au moyen de lignées cellulaires humaines, dérivées de mélanomes à différents stades de progression, nous avons trouvé que (1) la N-cadhérine est partiellement associée aux «lipid rafts » dans six lignées dérivées de mélanome en phase avancée de progression et dans des tumeurs expérimentales, mais pas dans deux lignées dérivées de mélanome à un stade plus précoce ; (2) l'association de la N-cadhérine dans les « lipid rafts » ne dépent pas de son niveau d'expression ; (3) la E-cadhérine n'est pas présente dans les « lipid rafts »d'une lignée de cellule de mélanome ayant conservé l'expression de la E-cadhérine ; (4) la localisation de la N-cadhérine dans les « lipid rafts »n'est pas modulée par les facteurs de croissance bFGF, IGF-I, et HRG1-β1, ni par des voies de signalisation impliquant MEK, PKA, les kinases de la famille Src, et PI3K ; (5) l'association de la N-cadhérine avec les « lipid rafts » n'est pas requise pour la stabilisation des jonctions adhérentes et n'est pas perturbée par la destruction de ces dernières ; (6) la N-cadhérine dans les « lipid rafts » forme un complexe avec β-caténine, p 120ctn et α-caténine. En conclusion, cette étude originale montre pour la première fois que dans des cellules de mélanome agressifs, une fraction de la N-cadhérine est localisée dans les « lipid rafts » en association avec β-caténine, p 120ctn et α-caténine. Comme la présence de la N-cadhérine dans les « lipid rafts » ne contribue pas à la formation de jonction adhérentes, cette étude suggère une nouvelle fonction pour la N-cadhérine dans les « lipid rafts ». SUMMARY Human skin is a complex organ composed of two layers separated by a basement membrane: the epidermis and the dermis. In the basal layer of the epidermis, the melanin-producing cells of the skin, the melanocytes deliver melanin-containing melanosomes to keratinocytes, thereby protecting the epidermis and the dermis from the deleterious effects of ultraviolet light. Melanocytes physically interact with keratinocytes through E-cadherin-mediated adhesion. During malignant transformation into melanoma cells, melanocytes lose E-cadherin expression and concomitantly gain expression of N-cadherin, a phenomenon referred to as "cadherin switch". Loss of E-cadherin allows melanocytes to escape the regulatory effects of neighbouring keratinocytes, while gain of N-cadherin expression promotes migration, invasion and metastatic abilities of melanoma cells. In preliminary experiments, we found that a fraction of N-cadherin localized to specialized membrane microdomains enriched in cholesterol- and glycosphingolipid, called lipid rafts. One particular feature of lipid rafts is that they are rich in signalling molecules and they possibly modulate transmembrane signalling events. Moreover, recent reports suggested that a specialized type of rafts called caveolae might contribute to tumor progression. Based on the documented role of N-cadherin in melanoma progression and its presence in lipid rafts of melanoma cells, we raised the hypothesis that the association of N-cadherin with lipid rafts might be relevant to melanoma progression. The aim of this project was to characterize N-cadherin associated to lipid rafts during melanoma progression. Using human melanoma cell lines derived from melanoma at different stages of progression, we found that (1) N-cadherin is partly associated to lipid rafts in six cell lines derived from melanomas at late stages of progression and in experimental tumors, but not in two melanoma cell lines derived from early stages; (2) N-cadherin targeting to lipid rafts does not depend on its expression level; (3) E-cadherin is not localized in lipid rafts of a melanoma cell line that retained E-cadherin expression; (4) N-cadherin localization to lipid rafts is not modulated by the growth factors bFGF, IGF-I, and HRG1-β1, nor by MEK-, PKA-, Src family kinases-, and PI3K-mediated signalling events; (5) the association of N-cadherin with lipid rafts is not required for adherens junctions stability nor it is perturbed by adherens junctions disruption; (6) N-cadherin in lipid rafts is in complex with β-catenin, p 120ctm and α-catenin. In conclusion, this study provides original evidence that in aggressive melanoma cells a pool of N-cadherin is localized in lipid rafts in association with β-catenin, p 120 and α-catenin. The presence of N-cadherin in lipid rafts independently of its involvement in adherens junctions formation, suggests a possible new role for N-cadherin recruited to lipid rafts. Further studies investigating the biological meaning of this localization promise to uncover new properties of this molecule.
Resumo:
SUMMARY : The present work addresses several aspects of cell cycle regulation, cell fate specification and cell death in the central nervous system (CNS), specifically the cortex and the retina. More precisely, we investigated the role of Bmi1, a polycomb family gene required for stem cell proliferation and self-renewal, in the development of the cerebral cortex, as well as in the genesis of the retina. These data, together with studies published during the last two decades concerning cell cycle re-activation in apoptotic neurons in the CNS, raised the question of a possible link between regulation of the cell cycle during development and during retinal degeneration. 1. The effects of Bmi1 loss in the cerebral cortex : Consistently with our and others' observations on failure of Bmi9-/- stem cells to proliferate and self-renew in vitro, the Bmi9-/- cerebral cortex presented slight defects in proliferation in stem/progenitor cells compartments in vivo. This was in accordance with the pattern of Bmi1 expression in the developing forebrain. The modest proliferation defects, compared to the drastic consequences of Bmi9 loss in vitro, suggest that cell-extrinsic mechanisms may partially compensate for Bmi1 deletion in vivo during cortical histogenesis. Nevertheless, we observed a decreased proliferating activity in neurogenic regions of the adult telencephalon, more precisely in the subventricular zone, showing that Bmi1 controls neural stem/progenitor proliferation during adulthood in vivo. Our data also highlight an increased production of astrocytes at birth, and a generalized gliosis in the adult Bmi9-/- brain. Importantly, glial progenitors and astrocytes retained the ability to proliferate in the absence of Bmi1. 2. The effects of Bmi1 loss in the retina : The pattern of expression of Bmi1 during development and in the adult retina suggests a role for Bmi1 in cell fate specification and differentiation rather than in proliferation. While the layering and the global structure of the retina appear normal in Bmi1 /adult mice, immunohistochemìcal analysis revealed defects in the three major classes of retinal interneurons, namely: horizontal, bipolar and amacrine cells. Electroretinogram recordings in Bmi9-/- mice are coherent with the defects observed at the histological level, with a reduced b-wave and low-profile oscillatory potentials. These results show that Bmi1 controls not only proliferation, but also cell type generation, as previously observed in the cerebellum. 3. Cell cycle events and related neuroprotective strategies in retinal degeneration : In several neurodegenerative disorders, neurons re-express cell cycle proteins such as cyclin dependent kinases (Cdks) prior to apoptosis. Here, we show for the first time that this is also the case during retinal degeneration. Rd1 mice carry a recessive defect (Pdeóbrd/rd) that causes retinal degeneration and serves as a model of retinitis pigmentosa. We found that photoreceptors express Cdk4 and Cdk2, and undergo DNA synthesis prior to cell death. To interfere with the reactivation of Cdk-related pathways, we deleted E2fs or Brni1, which normally allow cell cycle progression. While deleting E2f1 (downstream of Cdk4/6) in Rd1 mice provides only temporary protection, knocking out Bmi1 (upstream of Cdks) leads to an extensive neuroprotective effect, independent of p16ink4a or p19arf, two tumor suppressors regulated by Bmi1. Analysis of Cdks and the DNA repair-related protein Ligase IV showed that Bmi1 acts downstream of DNA repair events and upstream of Cdks in this neurodegenerative mechanism. Expression of Cdks during an acute model of retinal degeneration, light damage-induced photoreceptor death, points to a role for Bmi1 and cell cycle proteins in retinal degeneration. Considering the similarity with the cell cycle-related apoptotic pathway observed in other neurodegenerative diseases, Bmi1 is a possible general target to prevent or delay neuronal death. RESUME : Ce travail aborde plusieurs aspects de la régulation du cycle cellulaire, de la spécification du devenir des cellules et de la mort cellulaire dans le système nerveux centrale (SNC), plus particulièrement dans le cortex cérébral et dans la rétine. Nous nous sommes intéressés au gène Bmi1, appartenant à la famille polycomb et nécessaire à la prolifération et au renouvellement des cellules souches. Nous avons visé à disséquer son rôle dans le développement du cortex et de la rétine. Ces données, ainsi qu'une série de travaux publiés au cours des deux dernières décennies concernant la réactivation du cycle cellulaire dans les neurones en voie d'apoptose dans le SNC, nous ont ensuite poussé à chercher un lien entre la régulation du cycle cellulaire pendant le développement et au cours de la dégénérescence rétinienne. 1. Les effets de l'inactivation de Bmi1 dans le cortex cérébral : En accord avec l'incapacité des cellules souches neurales in vitro à proliférer et à se renouveler en absence de Bmi1, le cortex cérébral des souris Bmi1-/- présente de légers défauts de prolifération dans les compartiments contenant les cellules souches neurales. Ceci est en accord avec le profil d'expression de Bmi1 dans le télencéphale. Les conséquences de la délétion de Bmi1 sont toutefois nettement moins prononcées in vivo qu'in vitro ; cette différence suggère l'existence de mécanismes pouvant partiellement compenser l'absence de Bmi1 pendant la corticogenèse. Néanmoins, l'observation d'une réduction de la prolifération dans la zone sous-ventriculaire, la zone majeure de neurogenèse dans le télencéphale adulte, montre que Bmi1 contrôle la prolifération des cellules souche/progénitrices neurales chez la souris adulte. Nos résultats démontrent par ailleurs une augmentation de la production d'astrocytes à la naissance ainsi qu'une gliose généralisée à l'état adulte chez les souris Bmi1-/-. Les progéniteurs gliaux et les astrocytes conservent donc leur capacité à proliférer en absence de Bmi1. 2. Les effets de l'inactivation de Bmi1 dans la rétine : Le profil d'expression de Bmi1 pendant fe développement ainsi que dans la rétine adulte suggère un rôle de Bmi1 dans la spécification de certains types cellulaires et dans la différentiation plutôt que dans la prolifération. Alors que la structure et la lamination de la rétine semblent normales chez les souris Bmi1-/-, l'analyse par immunohistochimie amis en évidence des défauts au niveau des trois classes d'interneurones rétiniens (les cellules horizontales, bipolaires et amacrines). Les électrorétinogrammes des souris Bmi1-/- sont cohérents avec les défauts observés au niveau histologique et montrent une réduction de l'onde « b » et des potentiels oscillatoires. Ces résultats montrent que Bmi1 contrôle la génération de certaines sous-populations de neurones, comme démontré auparavant au niveau de cervelet. 3. Réactivation du cycle cellulaire et stratégies théraoeutiaues dans les dégénérescences rétiniennes : Dans plusieurs maladies neurodégénératives, les neurones ré-expriment des protéines du cycle cellulaire telles que les kinases cycline-dépendantes (Cdk) avant d'entrer en apoptose. Nous avons démontré que c'est aussi le cas dans les dégénérescences rétiniennes. Les souris Rd1 portent une mutation récessive (Pde6brd/rd) qui induit une dégénérescence de la rétine et sont utilisées comme modèle animal de rétinite pigmentaire. Nous avons observé que les photorécepteurs expriment Cdk4 et Cdk2, et entament une synthèse d'ADN avant de mourir par apoptose. Pour interférer avec la réactivation les mécanismes Cdk-dépendants, nous avons inactivé les gènes E2f et Bmi1, qui permettent normalement la progression du cycle cellulaire. Nous avons mis en évidence que la délétion de E2f1 (en aval de Cdk4/6) dans les souris Rd1 permet une protection transitoire des photorécepteurs. Toutefois, l'inactivation de Bmi1 (en amont des Cdk) est corrélée à une neuroprotection bien plus durable et ceci indépendamment de p16ink4a et p19arf, deux suppresseurs de tumeurs normalement régulés par Bmi1. L'analyse des Cdk et de la ligase IV (une protéine impliquée dans les mécanismes de réparation de l'ADN) a montré que Bmi1 agit en aval des événements de réparation de l'ADN et en amont des Cdk dans la cascade apoptotique dans les photorécepteurs des souris Rd1. Nous avons également observé la présence de Cdk dans un modèle aigu de dégénérescence rétinienne induit par une exposition des animaux à des niveaux toxiques de lumière. Nos résultats suggèrent donc un rôle général de Bmi1 et des protéines du cycle cellulaire dans les dégénérescences de la rétine. Si l'on considère la similarité avec les événements de réactivation du cycle cellulaire observés dans d'autres maladies neurodégénératives, Bmi1 pourrait être une cible thérapeutique générale pour prévenir la mort neuronale.
Resumo:
Osteoporosis is a serious worldwide epidemic. FRAX® is a web-based tool developed by the Sheffield WHO Collaborating Center team, that integrates clinical risk factors and femoral neck BMD and calculates the 10 year fracture probability in order to help health care professionals identify patients who need treatment. However, only 31 countries have a FRAX® calculator. In the absence of a FRAX® model for a particular country, it has been suggested to use a surrogate country for which the epidemiology of osteoporosis most closely approximates the index country. More specific recommendations for clinicians in these countries are not available. In North America, concerns have also been raised regarding the assumptions used to construct the US ethnic specific FRAX® calculators with respect to the correction factors applied to derive fracture probabilities in Blacks, Asians and Hispanics in comparison to Whites. In addition, questions were raised about calculating fracture risk in other ethnic groups e.g., Native Americans and First Canadians. The International Society for Clinical Densitometry (ISCD) in conjunction with the International Osteoporosis Foundation (IOF) assembled an international panel of experts that ultimately developed joint Official Positions of the ISCD and IOF advising clinicians regarding FRAX® usage. As part of the process, the charge of the FRAX® International Task Force was to review and synthesize data regarding geographic and race/ethnic variability in hip fractures, non-hip osteoporotic fractures, and make recommendations about the use of FRAX® in ethnic groups and countries without a FRAX® calculator. This synthesis was presented to the expert panel and constitutes the data on which the subsequent Official Positions are predicated. A summary of the International Task Force composition and charge is presented here.
Resumo:
Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer.
Resumo:
Since the 1980s in Western Europe, centralized states' control over subnational territories has been deeply affected by processes of Europeanization and regionalization. These changes have raised the issue of state territorial restructuring in a particular fashion: what capacity have formerly centralized states retained to steer and control subnational territories? The article draws on Mann's concept of infrastructural power, which refers to the state's capacity to exercise control and implement political decisions over the national territory. The article applies the two main operationalizations of the concept, namely the capability of the state to exercise control and the weight of the state in the subnational territories. Empirically, the article focuses on the French state in two policy sectors (education and housing). Although France is a most likely case, this article challenges this expectation, and shows the limits of the French state's infrastructural power over the subnational territories since the late 1980s.
Resumo:
In gram-negative bacteria, the outer membrane lipopolysaccharide is the main component triggering cytokine release from peripheral blood mononuclear cells (PBMCs). In gram-positive bacteria, purified walls also induce cytokine release, but stimulation requires 100 times more material. Gram-positive walls are complex megamolecules reassembling distinct structures. Only some of them might be inflammatory, whereas others are not. Teichoic acids (TA) are an important portion (> or =50%) of gram-positive walls. TA directly interact with C3b of complement and the cellular receptor for platelet-activating factor. However, their contribution to wall-induced cytokine-release by PBMCs has not been studied in much detail. In contrast, their membrane-bound lipoteichoic acids (LTA) counterparts were shown to trigger inflammation and synergize with peptidoglycan (PGN) for releasing nitric oxide (NO). This raised the question as to whether TA are also inflammatory. We determined the release of tumor necrosis factor (TNF) by PBMCs exposed to a variety of TA-rich and TA-free wall fragments from Streptococcus pneumoniae and Staphylococcus aureus. TA-rich walls from both organisms induced measurable TNF release at concentrations of 1 microg/ml. Removal of wall-attached TA did not alter this activity. Moreover, purified pneumococcal and staphylococcal TA did not trigger TNF release at concentrations as high as > or =100 microg/ml. In contrast, purified LTA triggered TNF release at 1 microg/ml. PGN-stem peptide oligomers lacking TA or amino-sugars were highly active and triggered TNF release at concentrations as low as 0.01 microg/ml (P. A. Majcherczyk, H. Langen, et al., J. Biol. Chem. 274:12537-12543,1999). Thus, although TA is an important part of gram-positive walls, it did not participate to the TNF-releasing activity of PGN.
Resumo:
Many economic booms have been accompanied by real exchange rate appreciations, large trade defcits -which have sometimes persisted after the return to the initial exchange rate parity- and a deteriorating traded sector. Those circumstances have typically raised the question of the de-sirability of some stabilization policy. We show that the dynamics induced by an expected productivity shock in an economy where the capital stock is non-mobile across sectors, match those circumstances. Furthermore, we obtain that credit market imperfections tend to exacerbate trade deficits, and to cause an inefficient capacity reduction in the traded sector. Some stabilization policies are explored.