877 resultados para projected targets
Resumo:
Barbara at Content Too is a key work of the author's exhibition Lightsite, which toured Western Australian galleries from February 2006 to November 2007. It is a five-minute-long exposure photographic image captured inside a purpose-built, room-sized pinhole camera which is demountable and does not have a floor. The work depicts amateur botanist Barbara Miller-Hornsey conducting a botanical survey. The pinhole camera-room is sited with the biodiverse heath landscape at Bremer Bay in the Great Southern Region of Western Australia. The light from this exterior landscape is 'projected' inside the camera-room and illuminates the interior scene which includes that part of the heath upon which the floorless room is erected, along with Barbara who is kneeling inside. The image evokes the temporality of light. Here, light itself is portrayed as the primary medium through which we both perceive and describe landscape. In this way it is through the agency of light that we construct our connectivity to landscape.
Resumo:
Jack's Bay (the architecturalisation of memory) is a key work of the author's exhibition Lightsite, which toured Western Australian galleries from February 2006 to November 2007. It is a five-minute-long exposure photographic image captured inside a purpose-built, room-sized pinhole camera which is demountable and does not have a floor. The work depicts octogenarian Jack Morris, who for forty years held the professional salmon fishing license in the hamlet of Bremer Bay, on the SE coast of Western Australia. The pinhole camera-room is sited within sand dunes new Jack's now demolished beachside camp. Three generations of Jack's descendents stand outside the room - from his daughter to his great grand children. The light from this exterior landscape is 'projected' inside the camera-room and illuminates the interior scene which includes that part of the sand dune upon which the floorless room is erected, along with Jack who is sitting inside. The image evokes the temporality of light. Here, light itself is portrayed as the primary medium through which we both perceive and describe landscape. In this way it is through the agency of light that we construct our connectivity to landscape.
Resumo:
Working Sheep on 'Glen Shiel' is a key work of the author's exhibition Lightsite, which toured Western Australian galleries from February 2006 to November 2007. It is a five-minute-long exposure photographic image captured inside a purpose-built, room-sized pinhole camera which is demountable and does not have a floor. The work depicts octogenarian Ian Mangan who is both one of the first and last soldier settler farmers in the Gairdner-Jerramungup district in the Great Southern Region of Western Australia. Ian, his son, Stuart and Grandson Jacob, are preparing the last mob of sheep for sale before they move off their farm. The pinhole camera-room is sited amongst the sheep in the farm's sheep yards. Stuart and Jacob are depicted here standing amongst the sheep. The light from this exterior landscape is 'projected' inside the camera-room and illuminates the interior scene which includes that part of the sheep yards upon which the floorless room is erected, along with Ian who is standing motionless inside. The image evokes the temporality of light. Here, light itself is portrayed as the primary medium through which we both perceive and describe landscape. In this way it is through the agency of light that we construct our connectivity to landscape.
Resumo:
The creative practice: the adaptation of picture book The Empty City (Megarrity/Oxlade, Hachette 2007) into an innovative, interdisciplinary performance for children which combines live performance, music, projected animation and performing objects. The researcher, in the combined roles of writer/composer proposes deliberate experiments in music, narrative and emotion in the various drafts of the adaptation, and tests them in process and performance product. A particular method of composing music for live performance is tested in against the emergent needs of a collaborative, intermedial process. The unpredictable site of research means that this project is both looking to address both pre-determined and emerging points of inquiry. This analysis (directed by audience reception) finds that critical incidents of intermediality between music, narrative, action and emotion translate directly into highlights of the performance.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
Sexual harassment can be conceptualized as a series of interactions between harassers and targets that either inhibit or increase outrage by third parties. The outrage management model predicts the kinds of actions likely to be used by perpetrators to minimize outrage, predicts the consequences of failing to use these tactics—namely backfire, and recommends countertactics to increase outrage. Using this framework, our archival study examined outrage-management tactics reported as evidence in 23 judicial decisions of sexual harassment cases in Australia. The decisions contained precise, detailed information about the circumstances leading to the claim; the events which transpired in the courtroom, including direct quotations; and the judges' interpretations and findings. We found evidence that harassers minimize outrage by covering up the actions, devaluing the target, reinterpreting the events, using official channels to give an appearance of justice, and intimidating or bribing people involved. Targets can respond using countertactics of exposure, validation, reframing, mobilization of support, and resistance. Although there are limitations to using judicial decisions as a source of information, our study points to the value of studying tactics and the importance to harassers of minimizing outrage from their actions. The findings also highlight that, given the limitations of statutory and organizational protections in reducing the incidence and severity of sexual harassment in the community, individual responses may be effective as part of a multilevel response in reducing the incidence and impact of workplace sexual harassment as a gendered harm.
Resumo:
Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.
Resumo:
Creating sustainable urban environments is one of the challenging issues that need a clear vision and implementation strategies involving changes in governmental values and decision making process for local governments. Particularly, internalisation of environmental externalities of daily urban activities (e.g. manufacturing, transportation and so on) has immense importance for which local policies are formulated to provide better living conditions for the people inhabiting urban areas. Even if environmental problems are defined succinctly by various stakeholders, complicated nature of sustainability issues demand a structured evaluation strategy and well-defined sustainability parameters for efficient and effective policy making. Following this reasoning, this study involves assessment of sustainability performance of urban settings mainly focusing on environmental problems caused by rapid urban expansion and transformation. By taking into account land-use and transportation interaction, it tries to reveal how future urban developments would alter daily urban travel behaviour of people and affect the urban and natural environments. The paper introduces a grid-based indexing method developed for this research and trailed as a GIS-based decision support tool to analyse and model selected spatial and aspatial indicators of sustainability in the Gold Coast. This process reveals parameters of site specific relationship among selected indicators that are used to evaluate index-based performance characteristics of the area. The evaluation is made through an embedded decision support module by assigning relative weights to indicators. Resolution of selected grid-based unit of analysis provides insights about service level of projected urban development proposals at a disaggregate level, such as accessibility to transportation and urban services, and pollution. The paper concludes by discussing the findings including the capacity of the decision support system to assist decision-makers in determining problematic areas and developing intervention policies for sustainable outcomes of future developments.
Resumo:
The Pedestrian Interaction Patch Project (PIPP) seeks to exert influence over and encourage abnormal pedestrian behavior. By placing an unadvertised (and non recording) interactive video manipulation system and projection source in a high traffic public area, the PIPP allows pedestrians to privately (and publically) re-engage with a previously inactive physical environment, like a commonly used walkway or corridor. This system, the results of which are projected in real time on the architectural surface, inadvertently provides pedestrians with questions around preconceived notions of self and space. In an attempt to re-activate our relationship with the physical surrounds we occupy each day the PIPP creates a new set of memories to be recalled as we re-enter known environments once PIPP has moved on and as such re-enlivens our relationship with the everyday architecture we stroll past everyday. The PIPP environment is controlled using the software program Isadora, devised by Mark Coniglio at Troika Ranch, and contains a series of video manipulation patches that are designed to not only grab the pedestrians attention but to also encourage a sense of play and interaction between the architecture, the digital environment, the initially unsuspecting participant(s) and the pedestrian audience. The PIPP was included as part of the planned walking tour for the “Playing in Urban Spaces” seminar day, and was an installation that ran for the length of the symposium in a reclaimed pedestrian space that was encountered by both the participants and general public during the course of the day long event. Ideally once discovered PIPP encouraged pedestrians to return through the course of the seminar day to see if the environmental patches had changed or altered, and changed their standard route to include the PIPP installation or to avoid it, either way, encouraging an active response to the pathways normally traveled or newly discovered each day.
Resumo:
Over the years, approaches to obesity prevention and treatment have gone from focusing on genetic and other biological factors to exploring a diversity of diets and individual behavior modification interventions anchored primarily in the power of the mind, to the recent shift focusing on societal interventions to design ";temptation-proof"; physical, social, and economic environments. In spite of repeated calls to action, including those of the World Health Organization (WHO), the pandemic continues to progress. WHO recently projected that if the current lifestyle trend in young and adult populations around the world persist, by 2012 in countries like the USA, health care costs may amount to as much as 17.7% of the GDP. Most importantly, in large part due to the problems of obesity, those children may be the first generation ever to have a shorter life expectancy than that of their parents. This work presents the most current research and proposals for addressing the pandemic. Past studies have focused primarly on either genetic or behavioral causes for obesity, however today's research indicates that a strongly integrated program is the best prospect for success in overcoming obesity. Furthermore, focus on the role of society in establishing an affordable, accessible and sustainable program for implementing these lifestyle changes is vital, particularly for those in economically challenged situations, who are ultimately at the highest risk for obesity. Using studies from both neuroscience and behavioral science to present a comprehensive overview of the challenges and possible solutions, The brain-to-society approach to obesity prevention focuses on what is needed in order to sustain a healthy, pleasurable and affordable lifestyle.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
Prostate cancer is an important male health issue. The strategies used to diagnose and treat prostate cancer underscore the cell and molecular interactions that promote disease progression. Prostate cancer is histologically defined by increasingly undifferentiated tumour cells and therapeutically targeted by androgen ablation. Even as the normal glandular architecture of the adult prostate is lost, prostate cancer cells remain dependent on the androgen receptor (AR) for growth and survival. This project focused on androgen-regulated gene expression, altered cellular differentiation, and the nexus between these two concepts. The AR controls prostate development, homeostasis and cancer progression by regulating the expression of downstream genes. Kallikrein-related serine peptidases are prominent transcriptional targets of AR in the adult prostate. Kallikrein 3 (KLK3), which is commonly referred to as prostate-specific antigen, is the current serum biomarker for prostate cancer. Other kallikreins are potential adjunct biomarkers. As secreted proteases, kallikreins act through enzyme cascades that may modulate the prostate cancer microenvironment. Both as a panel of biomarkers and cascade of proteases, the roles of kallikreins are interconnected. Yet the expression and regulation of different kallikreins in prostate cancer has not been compared. In this study, a spectrum of prostate cell lines was used to evaluate the expression profile of all 15 members of the kallikrein family. A cluster of genes was co-ordinately expressed in androgenresponsive cell lines. This group of kallikreins included KLK2, 3, 4 and 15, which are located adjacent to one another at the centromeric end of the kallikrein locus. KLK14 was also of interest, because it was ubiquitously expressed among the prostate cell lines. Immunohistochemistry showed that these 5 kallikreins are co-expressed in benign and malignant prostate tissue. The androgen-regulated expression of KLK2 and KLK3 is well-characterised, but has not been compared with other kallikreins. Therefore, KLK2, 3, 4, 14 and 15 expression were all measured in time course and dose response experiments with androgens, AR-antagonist treatments, hormone deprivation experiments and cells transfected with AR siRNA. Collectively, these experiments demonstrated that prostatic kallikreins are specifically and directly regulated by the AR. The data also revealed that kallikrein genes are differentially regulated by androgens; KLK2 and KLK3 were strongly up-regulated, KLK4 and KLK15 were modestly up-regulated, and KLK14 was repressed. Notably, KLK14 is located at the telomeric end of the kallikrein locus, far away from the centromeric cluster of kallikreins that are stimulated by androgens. These results show that the expression of KLK2, 3, 4, 14 and 15 is maintained in prostate cancer, but that these genes exhibit different responses to androgens. This makes the kallikrein locus an ideal model to investigate AR signalling. The increasingly dedifferentiated phenotype of aggressive prostate cancer cells is accompanied by the re-expression of signalling molecules that are usually expressed during embryogenesis and foetal tissue development. The Wnt pathway is one developmental cascade that is reactivated in prostate cancer. The canonical Wnt cascade regulates the intracellular levels of β-catenin, a potent transcriptional co-activator of T-cell factor (TCF) transcription factors. Notably, β-catenin can also bind to the AR and synergistically stimulate androgen-mediated gene expression. This is at the expense of typical Wnt/TCF target genes, because the AR:β-catenin and TCF:β-catenin interactions are mutually exclusive. The effect of β-catenin on kallikrein expression was examined to further investigate the role of β-catenin in prostate cancer. Stable knockdown of β-catenin in LNCaP prostate cancer cells attenuated the androgen-regulated expression of KLK2, 3, 4 and 15, but not KLK14. To test whether KLK14 is instead a TCF:β-catenin target gene, the endogenous levels of β-catenin were increased by inhibiting its degradation. Although KLK14 expression was up-regulated by these treatments, siRNA knockdown of β-catenin demonstrated that this effect was independent of β-catenin. These results show that β-catenin is required for maximal expression of KLK2, 3, 4 and 15, but not KLK14. Developmental cells and tumour cells express a similar repertoire of signalling molecules, which means that these different cell types are responsive to one another. Previous reports have shown that stem cells and foetal tissues can reprogram aggressive cancer cells to less aggressive phenotypes by restoring the balance to developmental signalling pathways that are highly dysregulated in cancer. To investigate this phenomenon in prostate cancer, DU145 and PC-3 prostate cancer cells were cultured on matrices pre-conditioned with human embryonic stem cells (hESCs). Soft agar assays showed that prostate cancer cells exposed to hESC conditioned matrices had reduced clonogenicity compared with cells harvested from control matrices. A recent study demonstrated that this effect was partially due to hESC-derived Lefty, an antagonist of Nodal. A member of the transforming growth factor β (TGFβ) superfamily, Nodal regulates embryogenesis and is re-expressed in cancer. The role of Nodal in prostate cancer has not previously been reported. Therefore, the expression and function of the Nodal signalling pathway in prostate cancer was investigated. Western blots confirmed that Nodal is expressed in DU145 and PC-3 cells. Immunohistochemistry revealed greater expression of Nodal in malignant versus benign glands. Notably, the Nodal inhibitor, Lefty, was not expressed at the mRNA level in any prostate cell lines tested. The Nodal signalling pathway is functionally active in prostate cancer cells. Recombinant Nodal treatments triggered downstream phosphorylation of Smad2 in DU145 and LNCaP cells, and stably-transfected Nodal increased the clonogencity of LNCaP cells. Nodal was also found to modulate AR signalling. Nodal reduced the activity of an androgen-regulated KLK3 promoter construct in luciferase assays and attenuated the endogenous expression of AR target genes including prostatic kallikreins. These results demonstrate that Nodal is a novel example of a developmental signalling molecule that is reexpressed in prostate cancer and may have a functional role in prostate cancer progression. In summary, this project clarifies the role of androgens and changing cellular differentiation in prostate cancer by characterising the expression and function of the downstream genes encoding kallikrein-related serine proteases and Nodal. Furthermore, this study emphasises the similarities between prostate cancer and early development, and the crosstalk between developmental signalling pathways and the AR axis. The outcomes of this project also affirm the utility of the kallikrein locus as a model system to monitor tumour progression and the phenotype of prostate cancer cells.
Resumo:
The relationship between the quality of parent-child interactions and positive child developmental trajectories is well established (Guralnick, 2006; Shonkoff & Meissels, 2000; Zubrick et al., 2008). However, a range of parental, family, and socio-economic factors can pose risks to parents’ capacity to participate in quality interactions with their children. In particular, families with a child with a disability have been found to have higher levels of parenting stress, and are more likely to experience economic disadvantage, as well as social isolation. The importance of early interventions to promote positive parenting and child development for these families is widely recognised (Shonkoff & Meissels, 2000). However, to date, there is a lack of evidence about the effectiveness of early parenting programs for families who have a young child with a disability. This thesis investigates the impact of a music therapy parenting program, Sing & Grow, on 201 parent-child dyads who attended programs specifically targeted to parents who had a young child with a disability. Sing & Grow is an Australian national early parenting intervention funded by the Australian Government Department of Families, Housing, Community Services and Indigenous Affairs and delivered by Playgroup Queensland. It is designed and delivered by Registered Music Therapists for families with children aged from birth to three years. It aims to improve parenting skills and confidence, improve family functioning (positive parent-child interactions), enhance child development, and provide social networking opportunities to socially isolated families. The intervention targets a range of families in circumstances that have the potential to impact negatively on family functioning. This thesis uses data from the National Evaluation Study of Sing & Grow from programs which were targeted at families who had a young child with a disability. Three studies were conducted to address the objectives of this thesis. Study 1 examines the effects of the Sing & Grow intervention on parent reported pre and post parent mental health, parenting confidence, parenting skills, and child development, and other parent reported outcomes including social support, use of intervention resources, satisfaction with the intervention and perceived benefits of and barriers to participation. Significant improvements from pre to post were found for parent mental health and parent reported child communication and social skills, along with evidence that parents were very satisfied with the program and that it brought social benefits to families. Study 2 explored the pre to post effects of the intervention on children’s developmental skills and parent-child interactions using observational ratings made by clinicians. Significant pre to post improvements were found for parenting sensitivity, parental engagement with child and acceptance of child as well as for child responsiveness to parent, interest, and participation in the intervention, and social skills. Study 3 examined the nature of child and family characteristics that predicted better outcomes for families while taking account of the level of participation in the program. An overall outcome index was calculated and served as the dependent variable in a logistic regression analysis. Families who attended six or more sessions and mothers who had not completed high school were more likely to have higher outcome scores at post intervention than those who attended fewer sessions and those with more educated mothers respectively. The findings of this research indicate that the intervention had a positive impact on participants’ mental health, parenting behaviours and child development and that level of attendance was associated with better outcomes. There was also evidence that the program reached its target of high risk families (i.e., families in which mothers had lower educational levels) and that for these families better outcomes were achieved. There were also indications that the program was accessible and highly regarded by families and that it promoted social connections for participants. A theoretical model of how the intervention is currently working for families is proposed to explain the connections between early parenting, child development and maternal wellbeing. However, more research is required to further elucidate the mechanisms by which the intervention creates change for families. This research presents promising evidence that a short term group music therapy program can elicit important therapeutic benefits for families who have a child with a disability.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved. This paper describes the development of detection algorithms and the evaluation of a real-time flight ready hardware implementation of a vision-based collision detection system suitable for fixed-wing small/medium size UAS. In particular, this paper demonstrates the use of Hidden Markov filter to track and estimate the elevation (β) and bearing (α) of the target, compares several candidate graphic processing hardware choices, and proposes an image based visual servoing approach to achieve collision avoidance