951 resultados para power analysis
Resumo:
Computing has recently reached an inflection point with the introduction of multicore processors. On-chip thread-level parallelism is doubling approximately every other year. Concurrency lends itself naturally to allowing a program to trade performance for power savings by regulating the number of active cores; however, in several domains, users are unwilling to sacrifice performance to save power. We present a prediction model for identifying energy-efficient operating points of concurrency in well-tuned multithreaded scientific applications and a runtime system that uses live program analysis to optimize applications dynamically. We describe a dynamic phase-aware performance prediction model that combines multivariate regression techniques with runtime analysis of data collected from hardware event counters to locate optimal operating points of concurrency. Using our model, we develop a prediction-driven phase-aware runtime optimization scheme that throttles concurrency so that power consumption can be reduced and performance can be set at the knee of the scalability curve of each program phase. The use of prediction reduces the overhead of searching the optimization space while achieving near-optimal performance and power savings. A thorough evaluation of our approach shows a reduction in power consumption of 10.8 percent, simultaneous with an improvement in performance of 17.9 percent, resulting in energy savings of 26.7 percent.
Resumo:
In ultra-low data rate wireless sensor networks (WSNs) waking up just to listen to a beacon every superframe can be a major waste of energy. This study introduces MedMAC, a medium access protocol for ultra-low data rate WSNs that achieves significant energy efficiency through a novel synchronisation mechanism. The new draft IEEE 802.15.6 standard for body area networks includes a sub-class of applications such as medical implantable devices and long-term micro miniature sensors with ultra-low power requirements. It will be desirable for these devices to have 10 years or more of operation between battery changes, or to have average current requirements matched to energy harvesting technology. Simulation results are presented to show that the MedMAC allows nodes to maintain synchronisation to the network while sleeping through many beacons with a significant increase in energy efficiency during periods of particularly low data transfer. Results from a comparative analysis of MedMAC and IEEE 802.15.6 MAC show that MedMAC has superior efficiency with energy savings of between 25 and 87 for the presented scenarios. © 2011 The Institution of Engineering and Technology.
Resumo:
Solar array rotation mechanism provides a hinged joint between the solar panel and satellite body, smooth rotation of the solar array into deployed position and its fixation in this position. After unlocking of solar panel (while in orbit), rotation bracket turns towards ready-to-work position under the action of driving spring. During deployment, once reached the required operating angle (defined by power subsystem engineer), the rotation bracket collides with the fixed bracket that is mounted on body of the satellite, to stop rotation. Due to the effect of collision force that may alter the rotation mechanism function, design of centrifugal brake is essential. At stoppage moment micro-switches activate final position sensor and a stopper locks the rotation bracket. Design of spring and centrifugal brake components, static finite element stress analysis of primary structure body of rotation mechanism at stoppage moment have been obtained. Last, reliability analysis of rotation mechanism is evaluated. The benefit of this study is to aid in the design of rotation mechanism that can be used in micro-satellite applications.
Resumo:
The geometry of tree branches can have considerable effect on their efficiency in terms of carbon export per unit carbon investment in structure. The purpose of this study was to evaluate different design criteria using data describing the form of Picea sitchensis branches. Allometric analysis of the data suggests that resources are distributed to favour shoots with the greatest opportunity for extension into new space, with priority to the extension of the leader. The distribution of allometric relations of links (branch elements) was tested against two models: the pipe model, based on hydraulic transport requirements, and a static load model based on the requirement of shoots to provide mechanical resistance to static loads. Static load resistance required the load parameter to be proportional to the link radius raised to the power of 4. This was shown to be true within a 95% statistical confidence limit. The pipe model would require total distal length to be proportional to link radius squared but the measured branches did not conform well to this model. The comparison suggests that the diameters of branch elements were more related to the requirements for mechanical load. The cost of following a hydraulic design principle (the pipe model) in terms of mechanical efficiency was estimated and suggested that the pipe model branch would not be mechanically compromised but would use structural resources inefficiently. Resource allocation among branch elements was found to be consistent with mechanical stability criteria but also indicated the possibility of allocation based on other criteria, such as potential light interception by shoots. The evidence suggests that whilst branch topology increments by reiteration of units of morphogenesis, the geometry follows a functional design pattern.
Resumo:
The capacity to provide satisfactory nursing care is being increasingly compromised by current trajectories of healthcare funding and governance. The purpose of this paper is to examine how well Marxist theories of the state and its relationship with capital can explain these trajectories in this period of ever-increasing austerity. Following a brief history of the current crisis, it examines empirically the effects of the crisis, and of the current trajectory of capitalism in general, upon the funding and organization of the UK and US healthcare systems. The deleterious effect of growing income inequalities to the health of the population are also addressed. Marx’s writings on the state and its relation to the capitalist class were fragmentary, and historically and geographically specific. From them, we can extract three theoretical variants: the instrumentalist theory of the state, where the state has no autonomy from capital; the abdication theory, whereby capital abstains from direct political power and relies on the state to serve its interests; and the class-balance theory of the state, whereby the struggle between two opposed classes allows the state to assert itself. Discussion of modern Marxist interpretations include Poulantzas’s structuralist abdication theory and Miliband’s instrumentalist theory. It is concluded that, despite the pluralism of electoral democracies, the bourgeoisie do have an overweening influence upon the state. The bourgeoisie’s ownership of the means of production provides the foundation for its influence because the state is obliged to rely on it to manage the supply of goods and services and the creation of wealth. That power is further reinforced by the infiltration of the bourgeoisie into the organs of state. The level of influence has accelerated rapidly over recent decades. One of the consequences of this has been that healthcare systems have become rich pickings for the evermore confident bourgeoisie.
Resumo:
This paper describes how worst-case error analysis can be applied to solve some of the practical issues in the development and implementation of a low power, high performance radix-4 FFT chip for digital video applications. The chip has been fabricated using a 0.6 µm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-time video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8×8 mm and dissipates 1 W, leading to a cost-effective silicon solution for high quality video processing applications. The analysis focuses on the effect that different radix-4 architectural configurations and finite wordlengths has on the FFT output dynamic range. These issues are addressed using both mathematical error models and through extensive simulation.
Resumo:
Power back-off performances of a new variant power-combining Class-E amplifier under different amplitude-modulation schemes such as continuous wave (CW), envelope elimination and restoration (EER), envelope tracking (ET) and outphasing are for the first time investigated in this study. Finite DC-feed inductances rather than massive RF chokes as used in the classic single-ended Class-E power amplifier (PA) resulted from the approximate yet effective frequency-domain circuit analysis provide the wherewithal to increase modulation bandwidth up to 80% higher than the classic single-ended Class-E PA. This increased modulation bandwidth is required for the linearity improvement in the EER/ET transmitters. The modified output load network of the power-combining Class-E amplifier adopting three-harmonic terminations technique relaxes the design specifications for the additional filtering block typically required at the output stage of the transmitter chain. Qualitative agreements between simulation and measurement results for all four schemes were achieved where the ET technique was proven superior to the other schemes. When the PA is used within the ET scheme, an increase of average drain efficiency of as high as 40% with respect to the CW excitation was obtained for a multi-carrier input signal with 12 dB peak-to-average power ratio. © 2011 The Institution of Engineering and Technology.
Resumo:
This paper analyzes data captured by a phasor measurement unit at a wind farm, employing two-speed induction generators, and investigates aspects of the control system's interaction with the power system. Composite superimposed transient events are proposed as a method to improve the quality of the analysis and reduce errors caused by unknowns, such as wind speed variation. A Mathworks SimPowerSystems model validates the inertia contribution of the wind farm, which is an important parameter in power systems with high wind penetration. Transients caused by turbine speed transitions are identified and explained. The analysis also highlights areas where wind farm control should be improved if useful inertia contribution is to be provided.
Resumo:
In this paper, taking advantage of the inclusion of a special module on material deprivation in EU-SILC 2009. we provide a comparative analysis of patterns of deprivation. Our analysis identifies six relatively distinct dimensions of deprivation with generally satisfactory overall levels of reliability and mean levels of reliability across countries. Multi-level analysis based on 28 European countries reveals systematic variation in the importance of within and between country variation for a range of deprivation dimensions. The basic deprivation dimension is the sole dimension to display a graduated pattern of variation across countries. It also reveals the highest correlations with national and household income, the remaining deprivation dimensions and economic stress. It comes closest to capturing an underlying dimension of generalized deprivation that can provide the basis for a comparative European analysis of exclusion from customary standards of living. A multilevel analysis revealed that a range of household characteristics and household reference person socio-economic factors were related to basic deprivation and controlling for contextual differences in such factors allowed us to account for substantial proportions of both within and between country variance. The addition of macro-economic factors relating to average levels of disposable income and income inequality contributed relatively little further in the way of explanatory power. Further analysis revealed the existence of a set of significant interactions between micro socioeconomic attributes and country level gross national disposable income per capita. The impact of socio-economic differentiation was significantly greater where average income levels were lower. Or, in other words, the impact of the latter was greater for more disadvantaged socio-economic groups. Our analysis supports the suggestion that an emphasis on the primary role of income inequality to the neglect of differences in absolute levels of income may be misleading in important respects. (C) 2012 International Sociological Association Research Committee 28 on Social Stratification and Mobility. Published by Elsevier Ltd. All rights reserved.
Resumo:
RATIONALE Stable isotope values (d13C and d15N) of darted skin and blubber biopsies can shed light on habitat use and diet of cetaceans, which are otherwise difficult to study. Non-dietary factors affect isotopic variability, chiefly the depletion of C due to the presence of C-rich lipids. The efficacy of post hoc lipid-correction models (normalization) must be tested. METHODS For tissues with high natural lipid content (e.g., whale skin and blubber), chemical lipid extraction or normalization is necessary. C:N ratios, d13C values and d15N values were determined for duplicate control and lipid-extracted skin and blubber of fin (Balaenoptera physalus), humpback (Megaptera novaeangliae) and minke whales (B. acutorostrata) by continuous-flow elemental analysis isotope ratio mass spectrometry (CF-EA-IRMS). Six different normalization models were tested to correct d13C values for the presence of lipids. RESULTS Following lipid extraction, significant increases in d13C values were observed for both tissues in the three species. Significant increases were also found for d15N values in minke whale skin and fin whale blubber. In fin whale skin, the d15N values decreased, with no change observed in humpback whale skin. Non-linear models generally out-performed linear models and the suitability of models varied by species and tissue, indicating the need for high model specificity, even among these closely related taxa. CONCLUSIONS Given the poor predictive power of the models to estimate lipid-free d13C values, and the unpredictable changes in d N values due to lipid-extraction, we recommend against arithmetical normalization in accounting for lipid effects on d13C values for balaenopterid skin or blubber samples. Rather, we recommend that duplicate analysis of lipid-extracted (d13C values) and non-treated tissues (d15N values) be used. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Analysis and synthesis of the new Class-EF power amplifier (PA) are presented in this paper. The proposed circuit offers means to alleviate some of the major issues faced by existing Class-EF and Class-EF PAs, such as (1) substantial power losses due to parasitic resistance of the large inductor in the Class-EF load network, (2) unpredictable behaviour of practical lumped inductors and capacitors at harmonic frequencies, and (3) deviation from ideal Class-EF operation mode due to detrimental effects of device output inductance at high frequencies. The transmission-line load network of the Class-EF PA topology elaborated in this paper simultaneously satisfies the Class-EF optimum impedance requirements at fundamental frequency, second, and third harmonics as well as simultaneously providing matching to the circuit optimum load resistance for any prescribed system load resistance. Furthermore, an elegant solution using an open and short-circuit stub arrangement is suggested to overcome the problem encountered in the mm-wave IC realizations of the Class-EF PA load network due to lossy quarter-wave line. © 2010 IEICE Institute of Electronics Informati.
Resumo:
Type 1 diabetes (T1D) increases risk of the development of microvascular complications and cardiovascular disease (CVD). Dyslipidemia is a common risk factor in the pathogenesis of both CVD and diabetic nephropathy (DN), with CVD identified as the primary cause of death in patients with DN. In light of this commonality, we assessed single nucleotide polymorphisms (SNPs) in thirty-seven key genetic loci previously associated with dyslipidemia in a T1D cohort using a casecontrol design. SNPs (n = 53) were genotyped using Sequenom in 1467 individuals with T1D (718 cases with proteinuric nephropathy and 749 controls without nephropathy i.e. normal albumin excretion). Cases and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK to compare allele frequencies in cases and controls. In a sensitivity analysis, samples from control individuals with reduced renal function (estimated glomerular filtration rate,60 ml/min/1.73 m2) were excluded. Correction for multiple testing was performed by permutation testing. A total of 1394 samples passed quality control filters. Following regression analysis adjusted by collection center, gender, duration of diabetes, and average HbA1c, two SNPs were significantly associated with DN. rs4420638 in the APOC1 region (odds ratio [OR] = 1.51; confidence intervals [CI]: 1.19–1.91; P = 0.001) and rs1532624 in CETP (OR = 0.82; CI: 0.69–0.99; P = 0.034); rs4420638 was also significantly associated in a sensitivity analysis (P = 0.016) together with rs7679 (P = 0.027). However, no association was significant following correction for multiple testing. Subgroup analysis of end-stage renal disease status failed to reveal any association. Our results suggest common variants associated with dyslipidemia are not strongly associated with DN in T1D among white individuals. Our findings, cannot entirely exclude these key genes which are central to the process of dyslipidemia, from involvement in DN pathogenesis as our study had limited power to detect variants of small effect size. Analysis in larger independent cohorts is required.
Resumo:
This article investigates to what extent the worldwide increase in body mass index (BMI) has been affected by economic globalization and inequality. We used time-series and longitudinal cross-national analysis of 127 countries from 1980 to 2008. Data on mean adult BMI were obtained from the Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group. Globalization was measured using the Swiss Economic Institute (KOF) index of economic globalization. Economic inequality between countries was measured with the mean difference in gross domestic product per capita purchasing power parity in international dollars. Economic inequality within countries was measured using the Gini index from the Standardized World Income Inequality Database. Other covariates including poverty, population size, urban population, openness to trade and foreign direct investment were taken from the World Development Indicators (WDI) database. Time-series regression analyses showed that the global increase in BMI is positively associated with both the index of economic globalization and inequality between countries, after adjustment for covariates. Longitudinal panel data analyses showed that the association between economic globalization and BMI is robust after controlling for all covariates and using different estimators. The association between economic inequality within countries and BMI, however, was significant only among high-income nations. More research is needed to study the pathways between economic globalization and BMI. These findings, however, contribute to explaining how contemporary globalization can be reformed to promote better health and control the global obesity epidemic. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Increasingly, it is recognized that new automated forms of analysis are required to understand the high-dimensional output obtained from atomistic simulations. Recently, we introduced a new dimensionality reduction algorithm, sketch-map, that was designed specifically to work with data from molecular dynamics trajectories. In what follows, we provide more details on how this algorithm works and on how to set its parameters. We also test it on two well-studied Lennard-Jones clusters and show that the coordinates we extract using this algorithm are extremely robust. In particular, we demonstrate that the coordinates constructed for one particular Lennard-Jones cluster can be used to describe the configurations adopted by a second, different cluster and even to tell apart different phases of bulk Lennard-Jonesium.
Resumo:
Plant and animal biodiversity can be studied by obtaining DNA directly from the environment. This new approach in combination with the use of generic barcoding primers (metabarcoding) has been suggested as complementary or alternative to traditional biodiversity monitoring in ancient soil sediments. However, the extent to which metabarcoding truly reflects plant composition remains unclear, as does its power to identify species with no pollen or macrofossil evidence. Here, we compared pollen-based and metabarcoding approaches to explore the Holocene plant composition around two lakes in central Scandinavia. At one site, we also compared barcoding results with those obtained in earlier studies with species-specific primers. The pollen analyses revealed a larger number of taxa (46), of which the majority (78%) was not identified by metabarcoding. The metabarcoding identified 14 taxa (MTUs), but allowed identification to a lower taxonomical level. The combined analyses identified 52 taxa. The barcoding primers may favour amplification of certain taxa, as they did not detect taxa previously identified with species-specific primers. Taphonomy and selectiveness of the primers are likely the major factors influencing these results. We conclude that metabarcoding from lake sediments provides a complementary, but not an alternative, tool to pollen analysis for investigating past flora. In the absence of other fossil evidence, metabarcoding gives a local and important signal from the vegetation, but the resulting assemblages show limited capacity to detect all taxa, regardless of their abundance around the lake. We suggest that metabarcoding is followed by pollen analysis and the use of species-specific primers to provide the most comprehensive signal from the environment. © 2013 Blackwell Publishing Ltd.