935 resultados para post-transcriptional control
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [1]. To date, FUS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS to genome stability control and DNA damage response. In fact, mice lacking FUS are hypersensitive to ionizing radiation and show high levels of chromosome instability and in response to double-strand breaks, FUS gets phosphorylated by the protein kinase ATM [3, 4, 5]. Moreover, upon DNA damage stress, FUS mediates Ebp1 (ErbB3 receptor-binding protein) SUMOylation, a post-translational modification that is required for its onco-suppressive activity, by acting as SUMO E3 ligase [6]. The study aims to investigate the role of FUS in DNA damage response and SUMOylation, two cellular pathways tightly interconnected to each other. Moreover, we will exploit biochemical and mass spectrometry-based approaches in order to identify other potential substrates of the E3 SUMO ligase activity of FUS. Preliminary results of mass spectrometric identification of FUS interacting proteins, in HEK293 and SHSY5Y cells, highlighted the interaction of FUS with several proteins involved in DNA damage response and many of those have been described already as target of SUMOylation, such as XRCC5, DDX5, PARP1, Nucleophosmin, and others. These evidences strengthen the hypothesis that FUS might represent a link between these pathways, even thou its exact role still needs to be clearly addressed. [1] Vance C. et al. (2009) Science 323(5918): p. 1208-11 [2] Fiesel FC., Kahle PJ. (2011) FEBS J. 278(19): p. 3550-68 [3] Kuroda M. et al. (2000) Embo J. 19(3): p. 453-62 [4] Hicks GG. et al. (2000) Nat Genet. 24(2):p. 175-9 [5] Gardiner M. et al. (2008) Biochem J. 415(2): p. 297-307 [6] Oh SM. et al. (2010) Oncogene 29(7): p. 1017-30
Resumo:
Pathogenesis of chronically developing alveolar echinococcosis (AE) is characterized by a continuous, granulomatous, periparasitic infiltration of immune cells surrounding the metacestode of Echinococcus multilocularis (E.multilocularis) in the affected liver. A detailed cytokine and chemokine profile analysis of the periparasitic infiltrate in the liver has, however, not yet been carried out in a comprehensive way all along the whole course of infection in E. multilocularis intermediate hosts. We thus assessed the hepatic gene expression profiles of 18 selected cytokine and chemokine genes using qRT-PCR in the periparasitic immune reaction and the subsequent adjacent, not directly affected, liver tissue of mice from day 2 to day 360 post intra-hepatic injection of metacestode. DNA microarray analysis was also used to get a more complete picture of the transcriptional changes occurring in the liver surrounding the parasitic lesions. Profiles of mRNA expression levels in the hepatic parasitic lesions showed that a mixed Th1/Th2 immune response, characterized by the concomitant presence of IL-12α, IFN-γ and IL-4, was established very early in the development of E. multilocularis. Subsequently, the profile extended to a combined tolerogenic profile associating IL-5, IL-10 and TGF-β. IL-17 was permanently expressed in the liver, mostly in the periparasitic infiltrate; this was confirmed by the increased mRNA expression of both IL-17A and IL-17F from a very early stage, with a subsequent decrease of IL-17A after this first initial rise. All measured chemokines were significantly expressed at a given stage of infection; their expression paralleled that of the corresponding Th1, Th2 or Th17 cytokines. In addition to giving a comprehensive insight in the time course of cytokines and chemokines in E. multilocularis lesion, this study contributes to identify new targets for possible immune therapy to minimize E. multilocularis-related pathology and to complement the only parasitostatic effect of benzimidazoles in AE.
Resumo:
BACKGROUND Adaptive servo-ventilation (ASV) is a well-established treatment of central sleep apnea (CSA) related to congestive heart failure (CHF). Few studies have evaluated the effectiveness and adherence in patients with CSA of other etiologies, and even less is known about treatment of CSA in patients of post ischemic stroke. METHODS A single-centre retrospective analysis of ASV treatment for CSA in post-acute ischemic stroke patients without concomitant CHF was performed. Demographics, clinical data, sleep studies, ventilator settings, and adherence data were evaluated. RESULTS Out of 154 patients on ASV, 15 patients had CSA related to ischemic stroke and were started on ASV a median of 11 months after the acute cerebrovascular event. Thirteen out of the 15 patients were initially treated with continuous positive airway pressure (11/15) and bilevel positive airway pressure (2/15) therapy with unsatisfactory control of CSA. ASV significantly improved AHI (46.7 ± 24.3 vs 8.5 ± 12/h, P = 0.001) and reduced ESS (8.7 ± 5.7 vs 5.6 ± 2.5, P = 0.08) with a mean nightly use of ASV of 5.4 ± 2.4 h at 3 months after the initiation of treatment. Results were maintained at 6 months. CONCLUSION ASV was well tolerated and clinically effective in this group of patients with persistent CSA after ischemic stroke.
Resumo:
Background: Health behavior change models identify effective self-regulatory skills for behavioral change, but the social context is usually neglected. This study investigated the effectiveness of a dyadic conceptualization of action control for promoting physical activity. Methods: 121 overweight individuals and their partners were randomly allocated to one of two experimental (dyadic vs. individual action control) and two control conditions. Participants completed questionnaires at baseline (T1) and four weeks later (T2) including measures of action control and 7-day recall physical activity. Findings: Results showed that action control signi+cantly increased from T1 to T2 and was overall higher in the experimental conditions compared to control conditions. In terms of physical activity, no overall intervention effect emerged. However, post hoc analyses revealed higher mean levels of sport activities in the dyadic intervention group compared to all other groups. Discussion: Overall, +ndings provide +rst support for the usefulness of a dyadic action control intervention, and suggest further investigation of objective measures of physical activity and secondary outcomes
Resumo:
OBJECTIVE To investigate frequent findings in cases of fatal opioid intoxication in whole-body post-mortem computed tomography (PMCT). METHODS PMCT of 55 cases in which heroin and/or methadone had been found responsible for death were retrospectively evaluated (study group), and were compared with PMCT images of an age- and sex-matched control group. Imaging results were compared with conventional autopsy. RESULTS The most common findings in the study group were: pulmonary oedema (95 %), aspiration (66 %), distended urinary bladder (42 %), cerebral oedema (49 %), pulmonary emphysema (38 %) and fatty liver disease (36 %). These PMCT findings occurred significantly more often in the study group than in the control group (p < 0.05). The combination of lung oedema, brain oedema and distended urinary bladder was seen in 26 % of the cases in the study group but never in the control group (0 %). This triad, as indicator of opioid-related deaths, had a specificity of 100 %, as confirmed by autopsy and toxicological analysis. CONCLUSIONS Frequent findings in cases of fatal opioid intoxication were demonstrated. The triad of brain oedema, lung oedema and a distended urinary bladder on PMCT was highly specific for drug-associated cases of death. KEY POINTS Frequent findings in cases of fatal opioid intoxication were investigated. Lung oedema, brain oedema and full urinary bladder represent a highly specific constellation. This combination of findings in post-mortem CT should raise suspicion of intoxication.
Resumo:
ntroduction: The ProAct study has shown that a pump switch to the Accu-Chek® Combo system (Roche Diagnostics Deutschland GmbH, Mannheim, Germany) in type 1 diabetes patients results in stable glycemic control with significant improvements in glycated hemoglobin (HbA1c) in patients with unsatisfactory baseline HbA1c and shorter pump usage time. Patients and Methods: In this post hoc analysis of the ProAct database, we investigated the glycemic control and glycemic variability at baseline by determination of several established parameters and scores (HbA1c, hypoglycemia frequency, J-score, Hypoglycemia and Hyperglycemia Indexes, and Index of Glycemic Control) in participants with different daily bolus and blood glucose measurement frequencies (less than four day, four or five per day, and more than five per day, in both cases). The data were derived from up to 299 patients (172 females, 127 males; age [mean±SD], 39.4±15.2 years; pump treatment duration, 7.0±5.2 years). Results: Participants with frequent glucose readings had better glycemic control than those with few readings (more than five readings per day vs. less than four readings per day: HbA1c, 7.2±1.1% vs. 8.0±0.9%; mean daily blood glucose, 151±22 mg/dL vs. 176±30 mg/dL; percentage of readings per month >300 mg/dL, 10±4% vs. 14±5%; percentage of readings in target range [80-180 mg/dL], 59% vs. 48% [P<0.05 in all cases]) and had a lower glycemic variability (J-score, 49±13 vs. 71±25 [P<0.05]; Hyperglycemia Index, 0.9±0.5 vs. 1.9±1.2 [P<0.05]; Index of Glycemic Control, 1.9±0.8 vs. 3.1±1.6 [P<0.05]; Hypoglycemia Index, 0.9±0.8 vs. 1.2±1.3 [not significant]). Frequent self-monitoring of blood glucose was associated with a higher number of bolus applications (6.1±2.2 boluses/day vs. 4.5±2.0 boluses/day [P<0.05]). Therefore, a similar but less pronounced effect on glycemic variability in favor of more daily bolus applications was observed (more than five vs. less than four bolues per day: J-score, 57±17 vs. 63±25 [not significant]; Hypoglycemia Index, 1.0±1.0 vs. 1.5±1.4 [P<0.05]; Hyperglycemia Index, 1.3±0.6 vs. 1.6±1.1 [not significant]; Index of Glycemic Control, 2.3±1.1 vs. 3.1±1.7 [P<0.05]). Conclusions: Pump users who perform frequent daily glucose readings have a better glycemic control with lower glycemic variability.
Resumo:
BACKGROUND The growth potential of the tumor-like Echinococcus multilocularis metacestode (causing alveolar echinococcosis, AE) is directly linked to the nature/function of the periparasitic host immune-mediated processes. We previously showed that Fibrinogen-like-protein 2 (FGL2), a novel CD4+CD25+ Treg effector molecule, was over-expressed in the liver of mice experimentally infected with E. multilocularis. However, little is known about its contribution to the control of this chronic helminth infection. METHODS/FINDINGS Key parameters for infection outcome in E. multilocularis-infected fgl2-/- (AE-fgl2-/-) and wild type (AE-WT) mice at 1 and 4 month(s) post-infection were (i) parasite load (i. e. wet weight of parasitic metacestode tissue), and (ii) parasite cell proliferation as assessed by determining E. multilocularis 14-3-3 gene expression levels. Serum FGL2 levels were measured by ELISA. Spleen cells cultured with ConA for 48h or with E. multilocularis Vesicle Fluid (VF) for 96h were analyzed ex-vivo and in-vitro. In addition, spleen cells from non-infected WT mice were cultured with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For Treg-immune-suppression-assays, purified CD4+CD25+ Treg suspensions were incubated with CD4+ effector T cells in the presence of ConA and irradiated spleen cells as APCs. Flow cytometry and qRT-PCR were used to assess Treg, Th17-, Th1-, Th2-type immune responses and maturation of dendritic cells. We showed that AE-fgl2-/- mice exhibited (as compared to AE-WT-animals) (a) a significantly lower parasite load with reduced proliferation activity, (b) an increased T cell proliferative response to ConA, (c) reduced Treg numbers and function, and (d) a persistent capacity of Th1 polarization and DC maturation. CONCLUSIONS FGL2 appears as one of the key players in immune regulatory processes favoring metacestode survival by promoting Treg cell activity and IL-17A production that contributes to FGL2-regulation. Prospectively, targeting FGL2 could be an option to develop an immunotherapy against AE and other chronic parasitic diseases.
Resumo:
Kosrae is the most remote island of the Federated States of Micronesia (FSM), with a population of less than 7,000 inhabitants, located in the Pacific Ocean between Hawaii and Guam. FSM is an independent sovereign nation consisting of four states in total: Pohnpei, Chuuk, Yap, and Kosrae. Having passed through the hands of Spain, Germany and Japan, the United States gained administrative control of FSM after WWII, as commissioned by the UN. The FSM became an independent nation in 1986 while still retaining affiliation with the US under a ‘Compact of Free Association’. Now both Kosraean and English are considered to be the two official languages and the variety of Kosraean English which has arisen proves for an interesting comparative study. In order to obtain the relevant data, I spent three months on the island of Kosrae, interviewing 90 local speakers, ranging in age (16-70), occupation, sex and time spent off island. The 45 minute long interviews were informal but supported by participant information to capture relevant data and conversations were guided in a way that aimed to reveal language and cultural attitudes. With reference to these samples, I examine the effects of American English on the language use in Kosrae. This paper aims to present a broad analysis of phonological, morphosyntactic and pragmatic features, such as pro-dropping, discourse markers and other practices in order to demonstrate the similarities and differences between the two varieties, which are coming to shape the variety developing on Kosrae. Having transcribed conversations using the tool Elan, I will put particular focus on [h] deletion and insertion, a rare occurrence found in a variety of post-colonial American English which I believe is of particular interest. I assess the presence of English in Kosrae with reference to sociological influences, past and present. First, I discuss the extralinguistic factors which have shaped the English that is currently used on Kosrae, including migration between US and FSM, and English as a language of administration, social media usage and visual media presence. Secondly, I assess the use of English in this community in light of Schneider’s (2007) ‘Dynamic Model’, with reference to America’s contribution as an ‘exploitation colony’ as defined by Mufwene (2001). Finally, an overview of the salient linguistic characteristics of Kosraean English, based on the data collected will be presented and compared to features associated with standard American English in view of examining overlap and divergence. The overall objective is to present a cross-linguistic description of a hitherto unexamined English emerging in a postcolonial environment with a juxtaposed contact variety. Mufwene, Salikoko S. 2001. The ecology of language evolution. Cambridge: Cambridge University Press. Schneider, E. (2007). Postcolonial Englishes. Cambridge: Cambridge University Press. Segal, H.G. (1989) Kosrae, The Sleeping Lady Awakens. Kosrae: Kosrae Tourist Division, Dept. Of Conservation and Development. Keywords: American English, Global English, Pacific English, Morphosyntactic, Phonological, Variation, Discourse
Resumo:
Hip dysplasia is characterized by insufficient femoral head coverage (FHC). Quantification of FHC is of importance as the underlying goal of the surgery to treat hip dysplasia is to restore a normal acetabular morphology and thereby to improve FHC. Unlike a pure 2D X-ray radiograph-based measurement method or a pure 3D CT-based measurement method, previously we presented a 2.5D method to quantify FHC from a single anteriorposterior (AP) pelvic radiograph. In this study, we first quantified and compared 3D FHC between a normal control group and a patient group using a CT-based measurement method. Taking the CT-based 3D measurements of FHC as the gold standard, we further quantified the bias, precision and correlation between the 2.5D measurements and the 3D measurements on both the control group and the patient group. Based on digitally reconstructed radiographs (DRRs), we investigated the influence of the pelvic tilt on the 2.5D measurements of FHC. The intraclass correlation coefficients (ICCs) for absolute agreement was used to quantify interobserver reliability and intraobserver reproducibility of the 2.5D measurement technique. The Pearson correlation coefficient, r, was used to determine the strength of the linear association between the 2.5D and the 3D measurements. Student's t-test was used to determine whether the differences between different measurements were statistically significant. Our experimental results demonstrated that both the interobserver reliability and the intraobserver reproducibility of the 2.5D measurement technique were very good (ICCs > 0.8). Regression analysis indicated that the correlation was very strong between the 2.5D and the 3D measurements (r = 0.89, p < 0.001). Student's t-test showed that there were no statistically significant differences between the 2.5D and the 3D measurements of FHC on the patient group (p > 0.05). The results of this study provided convincing evidence demonstrating the validity of the 2.5D measurements of FHC from a single AP pelvic radiograph and proved that it could serve as a surrogate for 3D CT-based measurements. Thus it may be possible to use this method to avoid a CT scan for the purpose of estimating 3D FHC in diagnosis and post-operative treatment evaluation of patients with hip dysplasia.
Resumo:
The levels of histone mRNA increase 35-fold as selectively detached mitotic CHO cells progress from mitosis through G1 and into S phase. Using an exogenous gene with a histone 3' end which is not sensitive to transcriptional or half-life regulation, we show that 3' processing is regulated as cells progress from G1 to S phase. The half-life of histone mRNA is similar in G1- and S-phase cells, as measured after inhibition of transcription by actinomycin D (dactinomycin) or indirectly after stabilization by the protein synthesis inhibitor cycloheximide. Taken together, these results suggest that the change in histone mRNA levels between G1- and S-phase cells must be due to an increase in the rate of biosynthesis, a combination of changes in transcription rate and processing efficiency. In G2 phase, there is a rapid 35-fold decrease in the histone mRNA concentration which our results suggest is due primarily to an altered stability of histone mRNA. These results are consistent with a model for cell cycle regulation of histone mRNA levels in which the effects on both RNA 3' processing and transcription, rather than alterations in mRNA stability, are the major mechanisms by which low histone mRNA levels are maintained during G1.
Resumo:
Encountering a cognitive conflict not only slows current performance, but it can also affect subsequent performance, in particular when the conflict is induced with bivalent stimuli (i.e., stimuli with relevant features for two different tasks) or with incongruent trials (i.e., stimuli with relevant features for two response alternatives). The post-conflict slowing following bivalent stimuli, called “bivalency effect”, affects all subsequent stimuli, irrespective of whether the subsequent stimuli share relevant features with the conflict stimuli. To date, it is unknown whether the conflict induced by incongruent stimuli results in a similar post-conflict slowing. To investigate this, we performed six experiments in which participants switched between two tasks. In one task, incongruent stimuli appeared occasionally; in the other task, stimuli shared no feature with the incongruent trials. The results showed an initial performance slowing that affected all tasks after incongruent trials. On further trials, however, the slowing only affected the task sharing features with the conflict stimuli. Therefore, the post-conflict slowing following incongruent stimuli is first general and then becomes conflict-specific across trials. These findings are discussed within current task switching and cognitive control accounts.
Resumo:
In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.
Resumo:
Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation.
Resumo:
Background: Reactive oxygen species (ROS) protect the host against a large number of pathogenic microorganisms. ROS have different effects on parasites of the genus Leishmania: some parasites are susceptible to their action, while others seem to be resistant. The role of ROS in L. amazonensis infection in vivo has not been addressed to date. Methods: In this study, C57BL/6 wild-type mice (WT) and mice genetically deficient in ROS production by phagocytes (gp91phox−/− ) were infected with metacyclic promastigotes of L. amazonensis to address the effect of ROS in parasite control. Inflammatory cytokines, parasite loads and myeloperoxidase (MPO) activity were evaluated. In parallel, in vitro infection of peritoneal macrophages was assessed to determine parasite killing, cytokine, NO and ROS production. Results: In vitro results show induction of ROS production by infected peritoneal macrophages, but no effect in parasite killing. Also, ROS do not seem to be important to parasite killing in vivo, but they control lesion sizes at early stages of infection. IFN-γ, TNF-α and IL-10 production did not differ among mouse strains. Myeloperoxidase assay showed augmented neutrophils influx 6 h and 72 h post - infection in gp91phox−/− mice, indicating a larger inflammatory response in gp91phox−/− even at early time points. At later time points, neutrophil numbers in lesions correlated with lesion size: larger lesions in gp91phox−/− at earlier times of infection corresponded to larger neutrophil infiltrates, while larger lesions in WT mice at the later points of infection also displayed larger numbers of neutrophils. Conclusion: ROS do not seem to be important in L. amazonensis killing, but they regulate the inflammatory response probably by controlling neutrophils numbers in lesions.
Resumo:
The intracellular protozoan parasites Theileria parva and Theileria annulata transform leucocytes by interfering with host cell signal transduction pathways. They differ from tumour cells, however, in that the transformation process can be entirely reversed by elimination of the parasite from the host cell cytoplasm using a specific parasiticidal drug. We investigated the state of activation of Akt/PKB, a downstream target of PI3-K-generated phosphoinositides, in Theileria-transformed leucocytes. Akt/PKB is constitutively activated in a PI3-K- and parasite-dependent manner, as judged by the specific phosphorylation of key residues, in vitro kinase assays and its cellular distribution. In previous work, we demonstrated that the parasite induces constitutive activation of the transcription factor NF-kappaB, providing protection against spontaneous apoptosis that accompanies transformation. In a number of other systems, a link has been established between the PI3-K-Akt/PKB pathway and NF-kappaB activation, resulting in protection against apoptosis. In Theileria-transformed leucocytes, activation of the NF-kappaB and the PI3-K-Akt/PKB pathways are not directly linked. The PI3-K-Akt/PKB pathway does not contribute to the persistent induction of IkappaBalpha phosphorylation, NF-kappaB DNA-binding or transcriptional activity. We show that the two pathways are downregulated with different kinetics when the parasite is eliminated from the host cell cytoplasm and that NF-kappaB-dependent protection against apoptosis is not dependent on a functional PI3-K-Akt/PKB pathway. We also demonstrate that Akt/PKB contributes, at least in part, to the proliferation of Theileria-transformed T cells.