895 resultados para porous cartilage
Resumo:
INTRODUCTION: Recent findings suggest that articular cartilage contains mesenchymal progenitor cells. The aim of this study was to examine the distribution of stem cell markers (Notch-1, Stro-1 and VCAM-1) and of molecules that modulate progenitor differentiation (Notch-1 and Sox9) in normal adult human articular cartilage and in osteoarthritis (OA) cartilage. METHODS: Expression of the markers was analyzed by immunohistochemistry (IHC) and flow cytometry. Hoechst 33342 dye was used to identify and sort the cartilage side population (SP). Multilineage differentiation assays including chondrogenesis, osteogenesis and adipogenesis were performed on SP and non-SP (NSP) cells. RESULTS: A surprisingly high number (>45%) of cells were positive for Notch-1, Stro-1 and VCAM-1 throughout normal cartilage. Expression of these markers was higher in the superficial zone (SZ) of normal cartilage as compared to the middle zone (MZ) and deep zone (DZ). Non-fibrillated OA cartilage SZ showed reduced Notch-1 and Sox9 staining frequency, while Notch-1, Stro-1 and VCAM-1 positive cells were increased in the MZ. Most cells in OA clusters were positive for each molecule tested. The frequency of SP cells in cartilage was 0.14 +/- 0.05% and no difference was found between normal and OA. SP cells displayed chondrogenic and osteogenic but not adipogenic differentiation potential. CONCLUSIONS: These results show a surprisingly high number of cells that express putative progenitor cell markers in human cartilage. In contrast, the percentage of SP cells is much lower and within the range of expected stem cell frequency. Thus, markers such as Notch-1, Stro-1 or VCAM-1 may not be useful to identify progenitors in cartilage. Instead, their increased expression in OA cartilage implicates involvement in the abnormal cell activation and differentiation process characteristic of OA.
Resumo:
This study determined the potential for neotissue formation and the role of STRO-1+ cells in immature versus mature articular cartilage. Cartilage explants from immature and mature bovine knee joints were cultured for up to 12 weeks and stained with safranin-O, for type II collagen and STRO-1. Bovine chondrocyte pellet cultures and murine knee joints at the age of 2 weeks and 3 months, and surgically injured cartilage, were analyzed for changes in STRO-1 expression patterns. Results show that immature explants contained more STRO-1+ cells than mature explants. After 8 weeks in culture, immature explants showed STRO-1+ cell proliferation and newly formed tissue, which contained glycosaminoglycan and type II collagen. Mature cartilage explants showed only minimal cell expansion and neotissue formation. Pellet cultures with chondrocytes from immature cartilage showed increased glycosaminoglycan synthesis and STRO-1+ staining, as compared to pellets with mature chondrocytes. The frequency of STRO-1+ cells in murine knee joints significantly declined with joint maturation. Following surgical injury, immature explants had higher potential for tissue repair than mature explants. In conclusion, these findings suggest that the high percentage of STRO-1+ cells in immature cartilage changes with joint maturation. STRO-1+ cells have the potential to form new cartilage spontaneously and after tissue injury. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Resumo:
PURPOSE: To investigate the reproducibility of dGEMRIC in the assessment of cartilage health of the adult asymptomatic hip joint. MATERIALS AND METHODS: Fifteen asymptomatic volunteers (mean age, 26.3 years +/- 3.0) were preliminarily studied. Any volunteer that was incidentally diagnosed with damaged cartilage on MRI (n = 5) was excluded. Ten patients that had no evidence of prior cartilage damage (mean age, 26.2 years +/- 3.4) were evaluated further in this study. The reproducibility of dGEMRIC was assessed with two T1(Gd) exams performed 4 weeks apart in these volunteers. The protocol involved an initial standard MRI to confirm healthy cartilage, which was then followed by dGEMRIC. The second scan included only the repeat dGEMRIC. Region of interest (ROI) analyses for T1(Gd)-measurement was performed in seven radial reformats. Statistical analysis included the student's t-test and intra-class correlation (ICC) measurement to assess reproducibility. RESULTS: Overall 70 ROIs were studied. Mean cartilage T1(Gd) values at various loci ranged from 560.9 ms to 684.4 ms at the first set of readings and 551.5 ms to 662.2 ms in the second one. The mean difference per region of interest between the two T1(Gd)-measurements ranged from 21.4 ms (3.7%) to 45.0 ms (6.8%), which was not found to be statistically significant (P = 0.153). There was a high reproducibility detected (ICC range, 0.667-0.915). Intra- and Inter-observer analyses proved a high agreement for T1(Gd) assessment (0.973 and 0.932). CONCLUSION: We found dGEMRIC to be a reliable tool in the assessment of cartilage health status in adult hip joints.
Resumo:
OBJECTIVES: To study the three-dimensional (3D) T1 patterns in different types of femoroacetabular impingement (FAI) by utilizing delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and subsequent 3D T1 mapping. We used standard grading of OA by Tonnis grade on standard radiographs and morphological grading of cartilage in MRI for comparative analysis. METHODS: dGEMRIC was obtained from ten asymptomatic young-adult volunteers and 26 symptomatic FAI patients. MRI included the routine hip protocol and a dual-flip angle (FA) 3D gradient echo (GRE) sequence utilizing inline T1 measurement. Cartilage was morphologically classified from the radial images based on the extent of degeneration as: no degeneration, degeneration zone measuring <0.75 cm from the rim, >0.75 cm, or total loss. T1 findings were evaluated and correlated. RESULTS: All FAI types revealed remarkably lower T1 mean values in comparison to asymptomatic volunteers in all regions of interest. Distribution of the T1 dGEMRIC values was in accordance with the specific FAI damage pattern. In cam-types (n=6) there was a significant drop (P<0.05) of T1 in the anterior to superior location. In pincer-types (n=7), there was a generalized circumferential decrease noted. High inter-observer (intra-observer) reliability was noted for T1 assessment using intra-class correlation (ICC):intra-class coefficient=0.89 (0.95). CONCLUSIONS: We conclude that a pattern of zonal T1 variation does seem to exist that is unique for different sub-groups of FAI. The FA GRE approach to perform 3D T1 mapping has a promising role for further studies of standard MRI and dGEMRIC in the hip joint.
Resumo:
The purpose of this study was to assess if delayed gadolinium MRI of cartilage using postcontrast T(1) (T(1Gd)) is sufficient for evaluating cartilage damage in femoroacetabular impingement without using noncontrast values (T(10)). T(1Gd) and DeltaR(1) (1/T(1Gd) - 1/T(10)) that include noncontrast T(1) measurements were studied in two grades of osteoarthritis and in a control group of asymptomatic young-adult volunteers. Differences between T(1Gd) and DeltaR(1) values for femoroacetabular impingement patients and volunteers were compared. There was a very high correlation between T(1Gd) and DeltaR(1) in all study groups. In the study cohort with Tonnis grade 0, correlation (r) was -0.95 and -0.89 with Tonnis grade 1 and -0.88 in asymptomatic volunteers, being statistically significant (P < 0.001) for all groups. For both T(1Gd) and DeltaR(1), a statistically significant difference was noted between patients and control group. Significant difference was also noted for both T(1Gd) and DeltaR(1) between the patients with Tonnis grade 0 osteoarthritis and those with grade 1 changes. Our results prove a linear correlation between T(1Gd) and DeltaR(1), suggesting that T(1Gd) assessment is sufficient for the clinical utility of delayed gadolinium MRI of cartilage in this setting and additional time-consuming T(10) evaluation may not be needed.
Resumo:
This study defines the feasibility of utilizing three-dimensional (3D) gradient-echo (GRE) MRI at 1.5T for T(2)* mapping to assess hip joint cartilage degenerative changes using standard morphological MR grading while comparing it to delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). MRI was obtained from 10 asymptomatic young adult volunteers and 33 patients with symptomatic femoroacetabular impingement (FAI). The protocol included T(2)* mapping without gadolinium-enhancement utilizing a 3D-GRE sequence with six echoes, and after gadolinium injection, routine hip sequences, and a dual-flip-angle 3D-GRE sequence for dGEMRIC T(1) mapping. Cartilage was classified as normal, with mild changes, or with severe degenerative changes based on morphological MRI. T(1) and T(2)* findings were subsequently correlated. There were significant differences between volunteers and patients in normally-rated cartilage only for T(1) values. Both T(1) and T(2)* values decreased significantly with the various grades of cartilage damage. There was a statistically significant correlation between standard MRI and T(2)* (T(1)) (P < 0.05). High intraclass correlation was noted for both T(1) and T(2)*. Correlation factor was 0.860 to 0.954 (T(2)*-T(1) intraobserver) and 0.826 to 0.867 (T(2)*-T(1) interobserver). It is feasible to gather further information about cartilage status within the hip joint using GRE T(2)* mapping at 1.5T.
Resumo:
The double-echo-steady-state (DESS) sequence generates two signal echoes that are characterized by a different contrast behavior. Based on these two contrasts, the underlying T2 can be calculated. For a flip-angle of 90 degrees , the calculated T2 becomes independent of T1, but with very low signal-to-noise ratio. In the present study, the estimation of cartilage T2, based on DESS with a reduced flip-angle, was investigated, with the goal of optimizing SNR, and simultaneously minimizing the error in T2. This approach was validated in phantoms and on volunteers. T2 estimations based on DESS at different flip-angles were compared with standard multiecho, spin-echo T2. Furthermore, DESS-T2 estimations were used in a volunteer and in an initial study on patients after cartilage repair of the knee. A flip-angle of 33 degrees was the best compromise for the combination of DESS-T2 mapping and morphological imaging. For this flip angle, the Pearson correlation was 0.993 in the phantom study (approximately 20% relative difference between SE-T2 and DESS-T2); and varied between 0.429 and 0.514 in the volunteer study. Measurements in patients showed comparable results for both techniques with regard to zonal assessment. This DESS-T2 approach represents an opportunity to combine morphological and quantitative cartilage MRI in a rapid one-step examination.
Resumo:
Factors such as instability and impingement lead to early cartilage damage and osteoarthritis of the hip joint. The surgical outcome of joint-preserving surgery about the hip joint depends on the preoperative quality of joint cartilage.For in vivo evaluation of cartilage quality, different biochemically sensitive magnetic resonance imaging (MRI) procedures have been tested, some of which have the potential of inducing a paradigm shift in the evaluation and treatment of cartilage damage and early osteoarthritis.Instead of reacting to late sequelae in a palliative way, physicians could assess cartilage damage early on, and the treatment intensity could be adequate and based on the disease stage. Furthermore, the efficiency of different therapeutic interventions could be evaluated and monitored.This article reviews the recent application of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and discusses its use for assessing cartilage quality in the hip joint. dGEMRIC is more sensitive to early cartilage changes in osteoarthritis than are radiographic measures and might be a helpful tool for assessing cartilage quality.
Resumo:
OBJECTIVE: The aim of the present pilot study is to show initial results of a multimodal approach using clinical scoring, morphological magnetic resonance imaging (MRI) and biochemical T2-relaxation and diffusion-weighted imaging (DWI) in their ability to assess differences between cartilage repair tissue after microfracture therapy (MFX) and matrix-associated autologous chondrocyte transplantation (MACT). METHOD: Twenty patients were cross-sectionally evaluated at different post-operative intervals from 12 to 63 months after MFX and 12-59 months after MACT. The two groups were matched by age (MFX: 36.0+/-10.4 years; MACT: 35.1+/-7.7 years) and post-operative interval (MFX: 32.6+/-16.7 months; MACT: 31.7+/-18.3 months). After clinical evaluation using the Lysholm score, 3T-MRI was performed obtaining the MR observation of cartilage repair tissue (MOCART) score as well as T2-mapping and DWI for multi-parametric MRI. Quantitative T2-relaxation was achieved using a multi-echo spin-echo sequence; semi-quantitative diffusion-quotient (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) was prepared by a partially balanced, steady-state gradient-echo pulse sequence. RESULTS: No differences in Lysholm (P=0.420) or MOCART (P=0.209) score were observed between MFX and MACT. T2-mapping showed lower T2 values after MFX compared to MACT (P=0.039). DWI distinguished between healthy cartilage and cartilage repair tissue in both procedures (MFX: P=0.001; MACT: P=0.007). Correlations were found between the Lysholm and the MOCART score (Pearson: 0.484; P=0.031), between the Lysholm score and DWI (Pearson:-0.557; P=0.011) and a trend between the Lysholm score and T2 (Person: 0.304; P=0.193). CONCLUSION: Using T2-mapping and DWI, additional information could be gained compared to clinical scoring or morphological MRI. In combination clinical, MR-morphological and MR-biochemical parameters can be seen as a promising multimodal tool in the follow-up of cartilage repair.
Resumo:
The purpose of this article was to evaluate the potential of in vivo zonal T2-mapping as a noninvasive tool in the longitudinal visualization of cartilage repair tissue maturation after matrix-associated autologous chondrocyte transplantation (MACT). Fifteen patients were treated with MACT and evaluated cross-sectionally, with a baseline MRI at a follow-up of 19.7 +/- 12.1 months after cartilage transplantation surgery of the knee. In the same 15 patients, 12 months later (31.7 +/- 12.0 months after surgery), a longitudinal 1-year follow-up MRI was obtained. MRI was performed on a 3 Tesla MR scanner; morphological evaluation was performed using a double-echo steady-state sequence; T2 maps were calculated from a multiecho, spin-echo sequence. Quantitative mean (full-thickness) and zonal (deep and superficial) T2 values were calculated in the cartilage repair area and in control cartilage sites. A statistical analysis of variance was performed. Full-tickness T2 values showed no significant difference between sites of healthy cartilage and cartilage repair tissue (p < 0.05). Using zonal T2 evaluation, healthy cartilage showed a significant increase from the deep to superficial cartilage layers (p < 0.05). Cartilage repair tissue after MACT showed no significant zonal increase from deep to superficial cartilage areas during baseline MRI (p > 0.05); however, during the 1-year follow-up, a significant zonal stratification could be observed (p < 0.05). Morphological evaluation showed no significant difference between the baseline and the 1-year follow-up MRI. T2 mapping seems to be more sensitive in revealing changes in the repair tissue compared to morphological MRI. In vivo zonal T2 assessment may be sensitive enough to characterize the maturation of cartilage repair tissue.
Resumo:
PURPOSE: To determine the feasibility of assessing early osteoarthritis (OA) in hips with femoroacetabular impingement (FAI) using delayed Gadolinium enhanced MRI of Cartilage (dGEMRIC). MATERIALS AND METHODS: Thirty-seven hips in 30 patients who had a dGEMRIC scan and radiographic evidence of FAI were identified. Clinical symptoms were assessed. Radiographic measurements were performed to determine acetabular and femoral morphology. The severity of radiographic OA was determined using Tönnis grade and minimum joint space width (JSW). On MRI, the alpha angle was measured on the sagittal oblique slices. Correlations between dGEMRIC index, patient symptoms, morphologic measurements, radiographic OA, and age were determined. RESULTS: Significant correlations were observed between dGEMRIC index, pain (P < 0.05), and alpha angle (P < 0.05). The correlation of dGEMRIC with alpha angle suggests that hips with more femoral deformity show signs of early OA. CONCLUSION: The results of osteoplasty for FAI depend on the amount of pre-existing OA in the joint. dGEMRIC may be a useful technique for diagnosis and staging of early osteoarthritis in hips with impingement.
Resumo:
INTRODUCTION: Cartilage defects are common pathologies and surgical cartilage repair shows promising results. In its postoperative evaluation, the magnetic resonance observation of cartilage repair tissue (MOCART) score, using different variables to describe the constitution of the cartilage repair tissue and the surrounding structures, is widely used. High-field magnetic resonance imaging (MRI) and 3-dimensional (3D) isotropic sequences may combine ideal preconditions to enhance the diagnostic performance of cartilage imaging.Aim of this study was to introduce an improved 3D MOCART score using the possibilities of an isotropic 3D true fast imaging with steady-state precession (True-FISP) sequence in the postoperative evaluation of patients after matrix-associated autologous chondrocyte transplantation (MACT) as well as to compare the results to the conventional 2D MOCART score using standard MR sequences. MATERIAL AND METHODS: The study had approval by the local ethics commission. One hundred consecutive MR scans in 60 patients at standard follow-up intervals of 1, 3, 6, 12, 24, and 60 months after MACT of the knee joint were prospectively included. The mean follow-up interval of this cross-sectional evaluation was 21.4 +/- 20.6 months; the mean age of the patients was 35.8 +/- 9.4 years. MRI was performed at a 3.0 Tesla unit. All variables of the standard 2D MOCART score where part of the new 3D MOCART score. Furthermore, additional variables and options were included with the aims to use the capabilities of isotropic MRI, to include the results of recent studies, and to adapt to the needs of patients and physician in a clinical routine examination. A proton-density turbo spin-echo sequence, a T2-weighted dual fast spin-echo (dual-FSE) sequence, and a T1-weighted turbo inversion recovery magnitude (TIRM) sequence were used to assess the standard 2D MOCART score; an isotropic 3D-TrueFISP sequence was prepared to evaluate the new 3D MOCART score. All 9 variables of the 2D MOCART score were compared with the corresponding variables obtained by the 3D MOCART score using the Pearson correlation coefficient; additionally the subjective quality and possible artifacts of the MR sequences were analyzed. RESULTS: The correlation between the standard 2D MOCART score and the new 3D MOCART showed for the 8 variables "defect fill," "cartilage interface," "surface," "adhesions," "structure," "signal intensity," "subchondral lamina," and "effusion"-a highly significant (P < 0.001) correlation with a Pearson coefficient between 0.566 and 0.932. The variable "bone marrow edema" correlated significantly (P < 0.05; Pearson coefficient: 0.257). The subjective quality of the 3 standard MR sequences was comparable to the isotropic 3D-TrueFISP sequence. Artifacts were more frequently visible within the 3D-TrueFISP sequence. CONCLUSION: In the clinical routine follow-up after cartilage repair, the 3D MOCART score, assessed by only 1 high-resolution isotropic MR sequence, provides comparable information than the standard 2D MOCART score. Hence, the new 3D MOCART score has the potential to combine the information of the standard 2D MOCART score with the possible advantages of isotropic 3D MRI at high-field. A clear limitation of the 3D-TrueFISP sequence was the high number of artifacts. Future studies have to prove the clinical benefits of a 3D MOCART score.
Resumo:
OBJECTIVES: To evaluate the relationship between T1 after intravenous contrast administration (T1Gd) and Delta relaxation rate (DeltaR1) = (1/T1(Gd) - 1/T1o) in the delayed Gadolinium-Enhanced MRI of cartilage (dGEMRIC) evaluation of cartilage repair tissue. MATERIALS AND METHODS: Thirty single MR examinations from 30 patients after matrix-associated autologous chondrocyte transplantations of the knee joint with different postoperative intervals were examined using an 8-channel knee-coil at 3T. T1 mapping using a 3D GRE sequence with a 35/10 degrees flip angle excitation pulse combination was performed before and after contrast administration (dGEMRIC technique). T1 postcontrast (T1(Gd)) and the DeltaR1 (relative index of pre- and postcontrast R1 value) were calculated for repair tissue and the weight-bearing normal appearing control cartilage. For evaluation of the different postoperative intervals, MR exams were subdivided into 3 groups (up to 12 months, 12-24 months, more than 24 months). For statistical analysis Spearman correlation coefficients were calculated. RESULTS: The mean value for T1 postcontrast was 427 +/- 159 ms, for DeltaR1 1.85 +/- 1.0; in reference cartilage 636 +/- 181 ms for T1 postcontrast and 0.83 +/- 0.5 for DeltaR1.The correlation coefficients were highly significant between T1 (Gd) and DeltaR1 for repair tissue (0.969) as well as normal reference cartilage (0.928) in total, and for the reparative cartilage in the early, middle postoperative, and late postoperative interval after surgery (R values: -0.986, -0.970, and -0.978, respectively). Using either T1(Gd) or DeltaR1, the 2 metrics resulted in similar conclusions regarding the time course of change of repair tissue and control tissue, namely that highly significant (P > 0.01) differences between cartilage repair tissue and reference cartilage were found for all follow-up groups. Additionally, for both metrics highly significant differences (P < 0.01) between early follow up and the 2 later postoperative groups for cartilage repair tissue were found. No statistical differences were found between the 2 later follow-up groups of reparative cartilage either for T1 (Gd) or DeltaR1. CONCLUSION: The high correlation between T1 (Gd) and DeltaR1 and the comparable conclusions reached utilizing metric implies that T1 mapping before intravenous administration of MR contrast agent is not necessary for the evaluation of repair tissue. This will help to reduce costs, inconvenience for the patients, simplifies the examination procedure, and makes dGEMRIC more attractive for follow-up of patients after cartilage repair surgeries.
Resumo:
OBJECTIVE: The aim of this study was to use morphological as well as biochemical (T2 and T2* relaxation times and diffusion-weighted imaging (DWI)) magnetic resonance imaging (MRI) for the evaluation of healthy cartilage and cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle joint. MATERIALS AND METHODS: Ten healthy volunteers (mean age, 32.4 years) and 12 patients who underwent MACT of the ankle joint (mean age, 32.8 years) were included. In order to evaluate possible maturation effects, patients were separated into short-term (6-13 months) and long-term (20-54 months) follow-up cohorts. MRI was performed on a 3.0-T magnetic resonance (MR) scanner using a new dedicated eight-channel foot-and-ankle coil. Using high-resolution morphological MRI, the magnetic resonance observation of cartilage repair tissue (MOCART) score was assessed. For biochemical MRI, T2 mapping, T2* mapping, and DWI were obtained. Region-of-interest analysis was performed within native cartilage of the volunteers and control cartilage as well as cartilage repair tissue in the patients subsequent to MACT. RESULTS: The overall MOCART score in patients after MACT was 73.8. T2 relaxation times (approximately 50 ms), T2* relaxation times (approximately 16 ms), and the diffusion constant for DWI (approximately 1.3) were comparable for the healthy volunteers and the control cartilage in the patients after MACT. The cartilage repair tissue showed no significant difference in T2 and T2* relaxation times (p > or = 0.05) compared to the control cartilage; however, a significantly higher diffusivity (approximately 1.5; p < 0.05) was noted in the cartilage repair tissue. CONCLUSION: The obtained results suggest that besides morphological MRI and biochemical MR techniques, such as T2 and T2* mapping, DWI may also deliver additional information about the ultrastructure of cartilage and cartilage repair tissue in the ankle joint using high-field MRI, a dedicated multichannel coil, and sophisticated sequences.