914 resultados para population genetic structure
Resumo:
"Literature cited": v.1, p. 437-442; v.2, p. 154-163; v.3, p. 124-125; v.5, p. 198-204; v.6, p. 113-115.
Resumo:
Background: Previous research into age of onset in affective disorders has produced conflicting results. This paper examines the influence of heterogeneity on the age-at-first-registration distribution for the ICD-9 diagnostic group 'affective psychosis'. Method: For 1979-1991, data for age-at-first-registration for 4985 individuals diagnosed with affective psychosis (ICD-9 296.x) were extracted from a name-linked mental health register. These data were divided into (i) '296.1 only', a category used to code unipolar depression (males = 700; females = 1321); and (ii) '296 other', all 296 cases other than 296.1 (males = 1280; females = 1684). Inception rates for each 5-year age division were adjusted for the background population age-structure as a rate per 100 000 population. Results: The age-at-first-registration distribution for affective psychosis has a wide age range, with women outnumbering men. There is a near-linear increase in inception rates for both men and women with 296.1 only, while the bulk of those with affective psychoses (296 other) have an inverted U-shaped age distribution. Males have an earlier modal age-at-first-registration for 296 other compared to females. Conclusion: The heterogeneity in terms of subtypes and sex in affective psychosis clouds the interpretation of age-at-first-registration. Separating those with unipolar psychotic depression from other subclassifications and differentiating by sex may provide clues to factors that precipitate the onset of affective psychosis.
Resumo:
Fifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance. After 2 years of phenotyping, 3 RGAs were shown to generate markers that were significantly associated with resistance to this disease. To assist in the understanding of the complex genetic structure of sugarcane, 17 of the 31 RGAs were also mapped in sorghum. Comparative mapping between sugarcane and sorghum revealed syntenic localization of several RGA clusters. The 3 brown rust associated RGAs were shown to map to the same linkage group (LG) in sorghum with 2 mapping to one region and the third to a region previously shown to contain a major rust-resistance QTL in sorghum. These results illustrate the value of using RGAs for the identification of markers linked to disease resistance loci and the value of simultaneous mapping in sugarcane and sorghum.
Resumo:
Several pathogenic strains of Escherichia coli exploit type III secretion to inject effector proteins into human cells, which then subvert eukaryotic cell biology to the bacterium's advantage. We have exploited bioinformatics and experimental approaches to establish that the effector repertoire in the Sakai strain of enterohemorrhagic E. coli (EHEC) O157:H7 is much larger than previously thought. Homology searches led to the identification of > 60 putative effector genes. Thirteen of these were judged to be likely pseudogenes, whereas 49 were judged to be potentially functional. In total, 39 proteins were confirmed experimentally as effectors: 31 through proteomics and 28 through translocation assays. At the protein level, the EHEC effector sequences fall into > 20 families. The largest family, the NleG family, contains 14 members in the Sakai strain alone. EHEC also harbors functional homologs of effectors from plant pathogens (HopPtoH, HopW, AvrA) and from Shigella (OspD, OspE, OspG), and two additional members of the Map/IpgB family. Genes encoding proven or predicted effectors occur in > 20 exchangeable effector loci scattered throughout the chromosome. Crucially, the majority of functional effector genes are encoded by nine exchangeable effector loci that lie within lambdoid prophages. Thus, type III secretion in E. coli is linked to a vast phage metagenome, acting as a crucible for the evolution of pathogenicity.
Resumo:
A molecular approach was used to genetically characterize 5 species (Aoruroides queenslandensis. Blattophila sphaerolaima, Cordonicola gibsoni, Desmicola ornato and Leidynemella fusiformis) belonging to the superfamily. Thelastomatoidea fi (Nematoda: Oxyurida), a group of pinworms that parasitizes terrestrial arthropods. The D3 domain of the large subunit Of nuclear ribosomal RNA (LSU) was sequenced for individual specimens, and the analysis of the sequence data allowed the genetic relationships of the 5 species to be studied dagger. The sequence variation in the D3 domain within individual species (0-1-8%) was significantly less than the differences among species (4(.)3-12(.)4%). Phylogenetic analyses, Using maximum parsimony, maximum likelihood, and neighbour-joining, tree-building methods, established relationships among the 5 species of Thelastomatoidea and Oxyuris equi (a species of the order Oxyurida). The molecular approach employed provides the prospect for developing DNA tools for the specific identification of the Thelastomatoidea, irrespective of developmental stage and sex, as a basis for systematic, ecological and/or population genetic investigations of members within this superfamily.
Resumo:
Thirty-three microsatellite loci were isolated for the Australian rainforest tree Macadamia integrifolia. Genotyping across a test panel of 43 commercial cultivars generated an average polymorphic information content of 0.480. Five loci showed no polymorphism across cultivars. Significant linkage disequilibrium was detected in 10 pairwise comparisons, including two pairs of loci identified from the same clone sequence. The 33 microsatellite loci represent a significant tool for genome mapping and population genetic studies.
Resumo:
To characterize the genetic structure and diversity of Pinus cembra L. populations native to two disjunct geographical areas, the Alps and the Carpathians, and to evaluate the rate of genetic differentiation among populations.
Resumo:
Acknowledgments The authors sincerely thank M.N. Cueto, J.M. Antonio and M.E. Garci of the ECOBIOMAR group at IIM-CSIC for molecular analysis, technical support and quality images of some parasites. M. Bao is supported by a PhD grant from the University of Aberdeen and also by financial support of the contract from the EU Project PARASITE (grant number 312068). A. Roura is supported by BFundación Barrié de la Maza^ postdoctoral fellowship and a Securing Food, Water and the Environment Research Focus Area grant (La Trobe University). This study was partially supported by a PhD grant from the Portuguese Foundation for Science and Technology (FCT) (SFRH/BD/4892/2008) and partially supported by the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Programme and national funds through FCT—Foundation for Science and Technology, under the project BPEst-C/MAR/LA0015/2013. The authors thank the staff of the Station of Hydrobiology of the USC BEncoro do Con^ due their participation in the surveys, with special mention to J. Sánchez for separating digenean fauna existing in the stomachs of A. fallax. This work has been partially supported by the project 10PXIB2111059PR of the Xunta de Galicia and the project MIGRANET of the Interreg IV B SUDOE (South-West Europe) Territorial Cooperation Programme (SOE2/P2/E288). D.J. Nachón is supported by a PhD grant from the Xunta de Galicia (PRE/2011/198)
Resumo:
Recently shown in some termites, Asexual Queen Succession (AQS) is a reproductive strategy in which the primary queen is replaced by numerous parthenogenetically-produced neotenic queens that mate with the primary king. In contrast, the workforce and alate dispersers are produced sexually. If the primary king is replaced by a sexually-produced neotenic son, the matings between neotenic male and females beget asymmetries in the reproductive value of alates, promoting a female-biased alate sex-ratio. Cavitermes tuberosus (Termitidae: Termitinae) is a soil-feeding tropical species, which shows parthenogenetically-produced neotenics and an AQS syndrome. Our work aims to characterize the reproductive strategies in this species by determining (i) the developmental scheme, (ii) the genetic origin of sexuals, (iii) the level of genetic structure (analysis of 65 nests distributed in 14 sites) and (iv) the alate sex-ratio.Our results show that (i) neotenic females develop from the third or fourth nymphal instar; (ii) the majority of neotenic females (82%) are parthenogenetically-produced while only 2% of female alates are so; (iii) nests are differentiated within sites, indicating that the foundation of new nests mainly occurs by nuptial flights; (iv) numerical sex-ratio of alate-destined sexuals is balanced (SRN=0.509, IC95%=0.497-0.522) while investment sex-ratio is slightly female-biased (SRE=0.529, IC95%=0.517-0.542). Altogether, our results demonstrate AQS and its implications in C. tuberosus, and reveal particularities compared to other species in which AQS has been demonstrated: neotenic-headed nests are less frequent than primary-headed ones and neotenic females never become physogastric. AQS is found in various ecological contexts and seems phylogenetically more widespread than previously thought. This strategy shows some evolutionary advantages but these seem to differ depending on species.
Resumo:
When releasing captive-bred animals into wild populations, it is essential to maintain the capacity for adaptation and resilience by minimising the effect on population genetic diversity. Populations of the jungle perch (Kuhlia rupestris) have become reduced or locally extinct along the Queensland coast; thus, captive breeding of K. rupestris for restocking is presently underway. Currently, multiple individuals are placed in a tank to produce larvae, yet the number of adults contributing to larval production is unknown. We performed a power analysis on pre-existing microsatellite loci to determine the minimum number of loci and larvae required to achieve accurate assignment of parentage. These loci were then used to determine the number of contributing participants during a series of four spawning events through the summer breeding season in 2012-2013. Not all fish contributed to larval production and no relationship was found between male body size and parentage success. In most cases, there was a high skew of offspring to one mating pair (62% was the average contribution of the most successful pair per tank). This has significant implications for the aquaculture, restocking and conservation of K. rupestris.
Resumo:
Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.
Resumo:
Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.
Resumo:
Intra-specific Y-chromosomal sequence variation is useful for analysing the male contribution to a species’ spatial genetic structure. In red deer (Cervus elaphus) this is especially relevant, because geographic dispersal and game translocations occur mainly through the males. However, Y-chromosomal markers for wild organisms are scarce and frequently non-polymorphic within species. We assessed the intra-specific variation of two Y-chromosomal introns in red deer, one in the DBY (or DDX3Y) gene and the other in the UBE1Y gene. The introns were amplified using previously published exonic primers and directly sequenced in individuals of five red deer subspecies from across Eurasia. However, no nucleotide polymorphism was observed, which rebuts the usefulness of these introns for studies of red deer phylogeography and on illegal transport of red deer within this region. Male-based phylogeographic studies should thus be focused on other Y-chromosomal markers for this species.