998 resultados para poly(allylamine hydrochloride)
Resumo:
Poly(3-dodecylthiophene) (P3DDT) and poly(3-octadecylthiophene) (P3ODT) are chosen to investigate the nonisothermal crystallization behavior by using differential scanning calorimetry (DSC). When Jeziorny method is applied, the deviation from the line appears at the later stage of crystallization for both P3DDT and P3ODT. The Ozawa equation fails to describe the nonisothermal crystallization of P3DDT, but succeeds for P3ODT. However, a new method proposed by our laboratory has been proven to be convenient and applicable for both of the two polymers. The values of the crystallization activation energy of P3DDT and P3ODT are estimated as 184.79 and 246.93 kJ/mol, respectively, in light of the Kissinger method. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Photoluminescence (PL) quantum efficiency is a key issue in designing successful light-emitting polymer systems. Exciton relaxation is strongly affected by exciton quenching at nonradiative trapping centers and the formation of excimers. These factors reduce the PL quantum yield of light-emitting polymers. In this work, we have systematically investigated the effects of exciton confinement on the PL quantum yield of an oligomer, polymer, and alternating block copolymer (ABC) PPV system. Time-resolved and temperature-dependent luminescence studies have been performed. The ABC design effectively confine photoexcitations within the chromophores, preventing exciton migration and excimer formation. An unusually high (PL) quantum yield (above 90%) in the solid state is reported for the alternating block copolymer PPV, as compared to that of similar to 30% of the polymer and oligomer model compounds. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Multiple melting behavior was observed in the differential scanning calorimetry (DSC) scans for the isothermally crystallized poly(iminosebacoyl iminodecamethylene) (PA1010) samples. Coexistence of crystal populations with different lamellar thickness in PA1010 was discussed by means of DSC, wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering techniques. During crystallization of the polymer, a major lamellar crystal population developed first, which possessed a higher melting temperature. However, a small fraction of the polymer formed minor crystal population with thinner lamellae, which was metastable and, upon post-annealing, could grow into more stable and thicker lamellae through melting and recrystallization process. Lamellae insertion or stacks would develop during the post-annealing at a lower temperature for the isothermally crystallized samples; thus, multiple crystal populations with different thickness could be produced. It is the multiple distribution of lamella thickness that gives rise to multiple melting behavior of crystalline polymers. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Novel poly(aryl ether ketone)s containing a lateral methoxy group were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and methoxyhydroquinone with 1,4-bis(4-fluorobenzoyl)benzene in a sulfolane solvent in the presence of anhydrous potassium carbonate. Their thermotropic liquid crystalline properties were characterized by a variety of experimental techniques, e.g. differential scanning calorimetry (DSC), polarized light microscopy and temperature-dependent FTIR. Thermotropic liquid crystalline behaviour was observed in the copolymers containing 30-80 mol-% mexthoxyhydroquinone. Both melting (T-m) and isotropization (T-i) transitions appeared in the DSC curves. The polarized light microscopy study of the liquid crystalline copolymers suggested their ordered smectic structures. As expected, the copolymers had lower melting transitions than the biphenol-based homopoly(aryl ether ketone)s because of the copolymerization effect of the crystal-disrupting monomer methoxyhydroquinone.
Resumo:
The crystallization behaviors of poly (3-dodecylthiophene) (P3DDT) under two different oriented solidification conditions, i.e.. two different relative relations (90 degrees and 180 degrees) between the directions of gravity and solidification, were investigated. X-ray diffraction results reveal that although similar layered structures are formed, under the condition of the relative relation 180 degrees. temperature gradient has greater effects on the perfect degree of the layered structures of P3DDT. It also can be concluded that after recrystallization, the layered structures of P3DDT can be improved at relative relation 90 degrees, but the orderly degree of the arrangements of alkyl side chains are not improved yet, even is reduced for both of the oriented solidification conditions.
Resumo:
In this paper, the synthesis and crystallization behavior of poly(ether ether ketone ether ketone) (PEEKEK) are reported. PEEKEK was prepared from 4,4'-bis(p-fluorobenzoyl) diphenyl ether (4,4'-FBDE) and hydroquinone along the nucleophilic substitution route. The thermal properties were investigated by using DSC and TGA. The crystallization behavior of PEEKEK under several conditions, i.e., crystallization from the molten state (melt crystallization), crystallization from a quenched sample (cold crystallization) and crystallization induced by exposing glassy sample to methylene chloride (solvent-induced crystallization) has also been investigated. The results show that crystallization of PEEKEK could be induced by the above methods, and no polymorphism was found. The differences in the crystallization of PEEKEK induced by the above methods are seen in their degree of crystallinity.
Resumo:
In this paper, melt crystallization of poly(ether ether ketone ketone) (PEEKK) under strong electric field was investigated. In the crystal structure of PEEKK, the length of c axis was found to he 1.075 nm, increasing by 7% compared to that of PEEKK crystallized without strong electric field. The molecule chains might take a more extended conformation through the opening of the bridge bond angles by increasing from 124 degrees to 144 degrees under strong electric field in the crystal structure.
Resumo:
A surface emitting microcavity was formed by sandwiching a polymer film containing poly(N-vinyleabzole) (PVK). 8-hydroxyquinoline aluminium (Alq(3)) and 4-(Dicyanome thylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-Pyran(DCM) between a distributed Bragg reflector (DBR) with a reflectivity of 99% and a silver film. The sample was optically pumped with 250 ps pulses at 2 Hz repetition rate by a 355 nm line of the third harmonic of a mode-lock Nd:YAG laser. The lasing phenomenon was observed in DCM-doped PVK microcavity. The full width at half maximum (FWHM) was 3 nm with the peak wavelength at 602 nm. The threshold energy for lasing was estimated to be about 3 mu J. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Water insoluble poly(epsilon-caprolactone) (PCL) was micronized into narrowly distributed stable nanoparticles. The biodegradation of such PCL nanoparticles in the presence of the enzyme, Lipase PS, was monitored by using laser light scattering because the scattering intensity is directly related to the particle concentration. The PCL and enzyme concentration dependence of the biodegradation rate supports a heterogeneous catalytic kinetics in which we have introduced an additional equilibrium between the inactive and active enzyme/substrate complexes. The initial rate equation derived on the basis of this mechanism was used to successfully explain the influence of surfactant, pH and temperature on the enzymatic biodegradation. Our results confirmed that both the adsorption and the enzymatic catalysis were important for the biodegradation of the PCL nanoparticles. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of entanglements on the glass transition and structural relaxation behaviors has been studied for polystyrene (PS) and phenolphthalein poly(ether sulfone) (PES-C) samples by fast evaporation of the solution of concentrations varying from above the overlapping concentration to far below it, and compared to the results we have studied previously in PC. It has been found that for all the polymers we have studied, in the concentrated solution region, the T-g of the samples obtained from solution are independent of the change of concentration and are very close to that of normal bulk samples, whereas in the dilute solution region the T-g of the samples decrease with the logarithm of decreasing concentration. The critical concentrations that divide the two distinct regions for the three polymers are 0.9% g/mL for PC, 0.1% g/mL for PS, and 1% g/mL for PES-C. The decrease of T-g of the samples is interpreted by the decrease of intermolecular entanglements as the isolation of polymer chains, and the entanglement of polymer chains restrained the mobility of the segments. The structural relaxation behavior of the polymers is also found to be different from that of normal bulk samples. The enthalpies of single-chain samples are lower than that of the bulk ones, which correspond to the lower glass transition temperature; the peaks are lower and broader, and the relaxed enthalpy is much lower as compared to that of bulk samples. In the three polymers we have studied, the influence of change of entanglements on both the decrease in glass transition temperature and relaxed enthalpy is the most significant for PS and the least for PES-C. It is indicated that the interactions in the flexible polymers are weak; thus, the restraint of the entanglements on the mobility of the segments plays a more important role in the flexible polymers, and the change of entanglement in the flexible polymers has a more significant influence on the physical properties.
Resumo:
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 similar to 1.2, probably reflecting one-dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. (C) 2000 John Wiley & Sons, Inc.
Resumo:
To obtain a novel support with practical value for metallocene catalyst (eta -C5H5)TiCl3 (CpTiCl3), poly (styrene-co-4-vinylpyridine) /SiO2 nanoscale hybrid material (SrP/SiO2) was firstly produced as support. After pretreatment by methylaluminoxane (MAO), the hybrid materials reacted with CpTiCl3. The results from SAXS, SEM and TEM indicated the morphology and structure of organic/inorganic hybrid materials, and the size of inorganic particle in hybrid was nanoscale. The results from IR and XPS showed that there were two possible cationic active species in the hybrid-supported catalyst, the polymerization results of styrene proved this possibility.
Resumo:
The permeation behavior of water vapor, H-2, CO2, O-2, N-2, and CH4 gases in a series of novel poly(aryl ether sulfone)s has been examined over a temperature range of 30-100 degreesC. These polymers include four alkyl-substituted cardo poly(aryl ether sulfone)s and four intermolecular interaction enhanced poly(aryl ether sulfone)s. Their water vapor and gas transport properties were compared to the unmodified cardo poly(aryl ether sulfone) (PES-C). It was found that the bulky alkyl substituents on the phenylene rings were advantageous for gas permeability, while the intermolecular hydrogen bonds and ionic bonds resulted in a considerable increase in gas permselectivity. The causes of the trend were interpreted according to free volume, interchain distance, and glass transition temperature, together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest was the observation that IMPES-L, which simultaneously bears bulky isopropyl substituent and pendant carboxylic groups, displayed 377% higher O-2 permeability and 5.3% higher O-2/N-2 permselectivity than PES-C. Furthermore, sodium salt form PES-Na+ and potassium salt form PES-K+ exhibited water vapor permeability twice as high as PES-C and H2O/N-2 selectivity in 10(5) order of magnitude.
Resumo:
The phase transition and transition kinetics of a liquid crystalline copoly(amide-imide) (PAI37), which was synthesized from 70 mol% pyromellitic dianhydride, 30 mol% terephthaloyl chloride, and 1,3-bis[4-(4'-aminophenoxy)cumyl]benzene, was characterized by differential scanning calorimetry, polarized light microscopy, X-ray diffraction, and rheology. PAI37 exhibits a glass transition temperature at 182 degreesC followed by multiple phase transitions. The crystalline phase starts to melt at similar to 220 degreesC and forms smectic C (S-C) phase. The Sc phase transforms into smectic A (S-A) phase when the temperature is above 237 degreesC. The S-C to S-A transition spans a broad temperature range in which the S-A phase vanishes and forms isotropic melt. The WARD fiber pattern of PAI37 pulled from the anisotropic melt revealed an anomalous chain orientation, which was characterized by its layer normal perpendicular to the fiber direction. The transition kinetics for the mesophase and crystalline phase formation was also studied.