916 resultados para physiological maturity
Resumo:
Eggplant seeds germination can be slow and uneven, justifying the use of pre-germinative treatments to improve the performance of seed lots. One option of treatment is the controlled hydration of seeds by priming. In this way, this study aimed to evaluate the performance of eggplant seeds cv. Embu submitted to different methodologies of priming. The seeds used in the experiment were stored in cold chamber (15º C and 55% RH) in paper bags. The research was carried out at Central Laboratory of Seeds/UFLA. The seeds were submitted to the priming in aerated solutions varying the following factors: temperature (15º C and 25º C), time (24, 48 and 72 hours) and solution (water, PEG, KNO3 and PEG+KNO3). Seeds were washed in running water and dried at 30º C, until the return to the initial moisture content, around 10%. The variables analyzed were percentage of germination, percentage of emergence, speed index of emergence and electrical conductivity. The treatments were arranged in a completely randomized design, according to a factorial arrangement 2x3x4+1 (control - seeds without priming). The results showed that priming improves the vigour of eggplant seeds with no effect on viability; the priming in water or KNO3 is efficient to improve the seed vigour and priming in water or KNO3 may use temperature of 15º C or 25º C for 24, 48 or 72 hours.
Resumo:
Abstract: Background: We aimed to estimate the median ages at specific stages of sexual maturity stratified by excess weight in boys and girls. Materials and method. This was a cross-sectional study made in 2007 in Florianopolis, Brazil, with 2,339 schoolchildren between 8 to 14 years of age (1,107 boys) selected at random in two steps (by region and type of school). The schoolchildren were divided into: i) those with excess weight and ii) those without excess weight, according to the WHO 2007 cut-off points for gender and age. Sexual maturity was self-evaluated by the subjects according to the Tanner sexual development stages, and utilizing median ages for the genitalia, breasts, and pubic hair stages. Results: In the boys with excess weight, precocity was observed in the stages 4 for genitals and pubic hair and 2 for pubic hair, with the values for excess and normal weight. The median ages at the beginning of puberty (stage 2–sexual development) for boys and girls in Florianopolis were 10.8 and 10.3 years, respectively. Conclusion: Excess weight is associated with lower median ages in the sexual maturity stages in boys and girls and that it should be taken into account when evaluating sexual maturity in children and adolescents.
Resumo:
Quantitative structure – activity relationships (QSARs) developed to evaluate percentage of inhibition of STa-stimulated (Escherichia coli) cGMP accumulation in T84 cells are calculated by the Monte Carlo method. This endpoint represents a measure of biological activity of a substance against diarrhea. Statistical quality of the developed models is quite good. The approach is tested using three random splits of data into the training and test sets. The statistical characteristics for three splits are the following: (1) n = 20, r2 = 0.7208, q2 = 0.6583, s = 16.9, F = 46 (training set); n = 11, r2 = 0.8986, s = 14.6 (test set); (2) n = 19, r2 = 0.6689, q2 = 0.5683, s = 17.6, F = 34 (training set); n = 12, r2 = 0.8998, s = 12.1 (test set); and (3) n = 20, r2 = 0.7141, q2 = 0.6525, s = 14.7, F = 45 (training set); n = 11, r2 = 0.8858, s = 19.5 (test set). Based on the proposed here models hypothetical compounds which can be useful agents against diarrhea are suggested.
Resumo:
Conselho Nacional de Desenvolvimento da Pesquisa (National Council of Research Development) - 476148/2010-3
Resumo:
Today, health problems are likely to have a complex and multifactorial etiology, whereby psychosocial factors interact with behaviour and bodily responses. Women generally report more health problems than men. The present thesis concerns the development of women’s health from a subjective and objective perspective, as related to psychosocial living conditions and physiological stress responses. Both cross-sectional and longitudinal studies were carried out on a representative sample of women. Data analysis was based on a holistic person-oriented approach as well as a variable approach. In Study I, the women’s self-reported symptoms and diseases as well as self-rated general health status were compared to physician-rated health problems and ratings of the general health of the women, based on medical examinations. The findings showed that physicians rated twice as many women as having poor health compared to the ratings of the women themselves. Moreover, the symptom ”a sense of powerlessness” had the highest predictive power for self-rated general health. Study II investigated individual and structural stability in symptom profiles between adolescence and middle-age as related to pubertal timing. There was individual stability in symptom reporting for nearly thirty years, although the effect of pubertal timing on symptom reporting did not extend into middle-age. Study III explored the longitudinal and current influence of socioeconomic and psychosocial factors on women’s self-reported health. Contemporary factors such as job strain, low income, financial worries, and double exposure in terms of high job strain and heavy domestic responsibilities increased the risk for poor self-reported health in middle-aged women. In Study IV, the association between self-reported symptoms and physiological stress responses was investigated. Results revealed that higher levels of medically unexplained symptoms were related to higher levels of cortisol, cholesterol, and heart rate. The empirical findings are discussed in relation to existing models of stress and health, such as the demand-control model, the allostatic load model, the biopsychosocial model, and the multiple role hypothesis. It was concluded that women’s health problems could be reduced if their overall life circumstances were improved. The practical implications of this might include a redesign of the labour market giving women more influence and control over their lives, both at and away from work.
Resumo:
[EN] Many ecologically important chemical transformations in the ocean are controlled by biochemical enzyme reactions in plankton. Nitrogenase regulates the transformation of N2 to ammonium in some cyanobacteria and serves as the entryway for N2 into the ocean biosphere. Nitrate reductase controls the reduction of NO3 to NO2 and hence new production in phytoplankton. The respiratory electron transfer system in all organisms links the carbon oxidation reactions of intermediary metabolism with the reduction of oxygen in respiration. Rubisco controls the fixation of CO2 into organic matter in phytoplankton and thus is the major entry point of carbon into the oceanic biosphere. In addition to these, there are the enzymes that control CO2 production, NH4 excretion and the fluxes of phosphate. Some of these enzymes have been recognized and researched by marine scientists in the last thirty years. However, until recently the kinetic principles of enzyme control have not been exploited to formulate accurate mathematical equations of the controlling physiological expressions. Were such expressions available they would increase our power to predict the rates of chemical transformations in the extracellular environment of microbial populations whether this extracellular environment is culture media or the ocean. Here we formulate from the principles of bisubstrate enzyme kinetics, mathematical expressions for the processes of NO3 reduction, O2 consumption, N2 fixation, total nitrogen uptake.
Resumo:
[EN] Brine shrimp nauplii (Artemia sp.) are used in aquaculture as the major food source for many cultured marine larvae, and also used in the adult phase for many juvenile and adult fish. One artemia species, Artemia franciscana is most commonly preferred, due to the availability of its cysts and to its ease in hatching and biomass production. The problem with A. franciscana is that its nutritional quality is relatively poor in essential fatty acids, so that it is common practice to enrich it with emulsions like SELCO and ORIGO. This “bioencapsulation”, enrichment method permits the incorporation of different kinds of products into the artemia. This brine-shrimp’s non-selective particle-feeding habits, makes it particularly suitable for this enrichment process. The bioencapsulation is done just prior to feeding the artemia to a predator organism. This allows the delivery of different substances, not only for nutrient enrichment, but also for changing pigmentation and administering medicine. This is especially useful in culturing ornamental seahorses and tropical fish in marine aquaria In this study the objectives were to determine, the relative nutrient value of ORIGO and SELCO as well as the optimal exposure to these supplements prior to their use as food-organisms.
Resumo:
Trabajo realizado por: Garijo, J. C., Hernández León, S.
Resumo:
The productivity of agricultural crops is seriously limited by salinity. This problem is rapidly increasing, particularly in irrigated lands. Like almost all the fruit tree species, Pyrus communis is generally considered a salt sensitive species, but only little information is available on its behavior under saline conditions. Previous studies, carried out in the Department of Fruit Tree and Woody Plant Science (University of Bologna), focused their attention on pear and quince salt stress responses to understand which rootstock would be the most suitable for pear in order to tolerate a salt stress condition. It has been reported that pear and quince have different ability in the uptake, translocation and accumulation of chloride (Cl-) and sodium (Na+) ions, when plants were irrigated for one season with saline water (5 dS/m). The aim of the present work was to deepen these aspects and investigate salt stress responses in pear and quince. Two different experiments have been performed: a “short-term” trial in a growth chamber and a “long-term” experiment in the open field. In the short-term experiment, three different genotypes usually adopted as pear rootstocks (MC, BA29 and Farold®40) and the pear variety Abbé Fétel own rooted have been compared under salt stress conditions. The trial was performed in a hydroponic culture system, applying a 90 mM NaCl stress to half of the plants, after five weeks of normal growth in Hoagland’s solution. During the three-weeks of salt stress treatment, physiological, mineral and molecular analyses were performed in order to monitor, for each genotype, the development of the salt stress responses in comparison with the corresponding “unstressed” plants. Farold®40 and Abbé Fétel own rooted showed the onset of leaf necrosis, due to salt toxicity, one week before quinces. Moreover, quinces displayed a significant delay in premature senescence of old leaves, while pears emerged for their ability to regenerate new leaves from apparently dead foliage with the salt stress still running. Physiological measurements, such as shoots length, chlorophyll (Chl) content, and photosynthesis, have been carried out and revealed that pears exhibited a significant reduction in water content and a wilting aspect, while for quinces a decrease in Chl content and a growth slowdown were observed. At the end of the trial, all plants were collected and organs separated for dry weight estimation and mineral analyses (Cu, Fe, Mn, Zn Mg, Ca, K, Na and Cl). Mineral contents have been affected by salinity; same macro/micro nutrients were altered in some organs or relocated within the plant. This plant response could have partially contributed to face the salt stress. Leaves and roots have been harvested for molecular analyses at four different times during stress conditions. Molecular analyses consisted of the gene expression study of three main ion transporters, well known in Arabidopsis thaliana as salt-tolerance determinants in the “SOS” pathway: NHX1 (tonoplast Na+/H+ antiporter), SOS1 (plasmalemma Na+/H+ antiporter) and HKT1 (K+ high-affinity and Na+ low-affinity transporter). These studies showed that two quince rootstocks adopted different responsive mechanisms to NaCl stress. BA29 increased its Na+ sequestration activity into leaf vacuoles, while MC enhanced temporarily the same ability, but in roots. Farold®40, instead, exhibited increases in SOS1 and HKT1 expression mainly at leaf level in the attempt to retrieve Na+ from xylem, while Abbé Fétel differently altered the expression of these genes in roots. Finally, each genotype showed a peculiar response to salt stress that was the sum of its ability in Na+ exclusion, osmotic tolerance and tissue tolerance. In the long-term experiment, potted trees of the pear variety Abbé Fétel grafted on different rootstocks (MC, BA29 and Farold®40), or own rooted and also rootstocks only were subjected to a salt stress through saline water irrigation with an electrical conductivity of 5 dS/m for two years. The purposes of this study were to evaluate salinity effects on physiological (shoot length, number of buds, photosynthesis, etc.) and yield parameters of cultivar Abbé Fétel in the different combinations and to determine the salt amount that pear is able to tolerate over the years. With this work, we confirmed the previous hypothesis that pear, despite being classified as a salt-sensitive fruit tree, can be cultivated for two years under saline water irrigation, without showing any salt toxicity symptoms or severe drawbacks on plant development and production. Among different combinations, Abbé Fétel grafted on MC resulted interesting for its peculiar behaviors under salt stress conditions. In the near future, further investigations on physiological and molecular aspects will be necessary to enrich and broaden the knowledge of salt stress responses in pear.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
In recent years and thanks to innovative technological advances in supplemental lighting sources and photo-selective filters, light quality manipulation (i.e. spectral composition of sunlight) have demonstrated positive effects on plant performance in ornamentals and vegetable crops. However, this aspect has been much less studied in fruit trees due to the difficulty of conditioning the light environment of orchards. The aim of the present PhD research was to study the use of different colored nets with selective light transmission in the blue (400 – 500 nm), red (600 – 700 nm) and near infrared (700 – 1100 nm) wavelengths as a tool to the light quality management and its morphological and physiological effects in field-grown apple trees. Chapter I provides a review the current status on physiological and technological advances on light quality management in fruit trees. Chapter II shows the main effect of colored nets on morpho-anatomical (stomata density, mesophyll structure and leaf mass area index) characteristics in apple leaves. Chapter III provides an analysis about the effect of micro-environmental conditions under colored nets on leaf stomatal conductance and leaf photosynthetic capacity. Chapter IV describes a study approach to evaluate the impact of colored nets on fruit growth potential in apples. Summing up results obtained in the present PhD dissertation clearly demonstrate that light quality management through photo-selective colored nets presents an interesting potential for the manipulation of plant morphological and physiological traits in apple trees. Cover orchards with colored nets might be and alternative technology to address many of the most important challenges of modern fruit growing, such as: the need for the efficient use of natural resources (water, soil and nutrients) the reduction of environmental impacts and the mitigation of possible negative effects of global climate change.