980 resultados para physical and chemical factors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho teve como objectivo caracterizar quimicamente a água da chuva recolhida na cidade de Aveiro, localizada a sudoeste da Europa, no período de Setembro de 2008 a Setembro de 2009. Para matrizes diluídas como a da água da chuva, as metodologias analíticas a utilizar para se conseguir uma rigorosa caracterização química são de grande importância e ainda não estão uniformizadas. Assim, para caracterizar a fracção orgânica, primeiramente foram comparadas duas metodologias de filtração (0.22 e 0.45 μm) e foram estudados dois procedimentos de preservação da água da chuva (refrigeração e congelação), utilizando a espectroscopia de fluorescência molecular. Além disso, foram comparados dois procedimentos de isolamento e extracção da matéria orgânica dissolvida (DOM) da água da chuva, baseados na sorção nos sorbentes DAX-8 e C-18, utilizando as espectroscopias de ultravioleta-visível e fluorescência molecular. Relativamente aos resultados das metodologias de filtração e preservação, é recomendada a filtração por 0.45 μm, assim como, as amostras de água da chuva deverão ser mantidas no escuro a 4ºC, no máximo até 4 dias, até às análises espectroscópicas. Relativamente à metodologia de isolamento e extracção da DOM, os resultados mostraram que o procedimento de isolamento baseado na C-18 extraiu a DOM que é representativa da matriz global, enquanto que o procedimento da DAX-8 extraiu preferencialmente a fracção do tipo húmico. Como no presente trabalho pretendíamos caracterizar a fracção do tipo húmico da DOM da água da chuva, foi escolhida a metodologia de isolamento e extracção baseada na sorção no sorvente DAX-8. Previamente ao isolamento e extracção da DOM da água da chuva, toda a fracção orgânica das amostras de água da chuva foi caracterizada pelas técnicas de ultravioleta-visível e de fluorescência molecular. As amostras mostraram características semelhantes às de outras águas naturais, e a água da chuva do Verão e Outono apresentou maior conteúdo da matéria orgânica dissolvida cromofórica que a do Inverno e Primavera. Posteriormente, a fracção do tipo húmico de algumas amostras de água da chuva, isolada e extraída pelo procedimento baseado na DAX-8, foi caracterizada utilizando as técnicas espectroscópicas de ultravioleta-visível, fluorescência molecular e ressonância magnética nuclear de protão. Todos os extractos continham uma mistura complexa de compostos hidroxilados e ácidos carboxílicos, com uma predominância da componente alifática e um baixo conteúdo da componente aromática. A fracção inorgânica da água da chuva foi caracterizada determinando a concentração das seguintes espécies iónicas: H+, NH4 +, Cl-, NO3 -, SO4 2-. Os resultados foram comparados com os obtidos na chuva colectada no mesmo local entre 1986-1989 e mostraram que de todos os iões determinados a concentração de NO3 - foi a única que aumentou (cerca do dobro) em 20 anos, tendo sido atribuído ao aumento de veículos e emissões industriais na área de amostragem. Durante o período de amostragem cerca de 80% da precipitação esteve associada a massas de ar oceânicas, enquanto a restante esteve relacionada com massas que tiveram uma influência antropogénica e terrestre. De um modo geral, para as fracções orgânica e inorgânica da água da chuva analisadas, o conteúdo químico foi menor para as amostras que estiveram associadas a massas de ar marítimas do que para as amostras que tiveram contribuições terrestres e antropogénicas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os materiais microporosos e mesoporosos são potenciais catalisadores heterogéneos. Os zeólitos e outros materiais microporosos do tipo zeolítico tradicionais, têm átomos tetracoordenados no esqueleto. Nos últimos anos, um vasto número de titanossilicatos contendo Ti(IV) hexacoordenado e Si(IV) tetracoordenado, com estruturas tridimensionais, têm sido alvo de grande interesse. Um dos objectivos desta tese foi preparar silicatos microporosos, contendo átomos metálicos com número de coordenação superior a quatro, e possuindo quer novas estruturas quer propriedades físicas e químicas interessantes. Neste contexto, foi preparado um novo ítriossilicato de sódio, AV-1, análogo do raro mineral montregianite, Na4K2Y2Si16O38·10H2O. Este material é o primeiro sólido microporoso que contem quantidades estequiométricas de sódio (e ítrio) no esqueleto. Foi, também, sintetizado um silicato de cério, AV-5, análogo estrutural do mineral montregianite com potencial aplicação em optoelectrónica. Nesta tese é, ainda, descrita a síntese e caracterização estrutural de um silicato de cálcio hidratado, AV-2, análogo do raro mineral rhodesite (K2Ca4Na2Si16O38.12H2O). Na continuação do trabalho desenvolvido em Aveiro na síntese de novos titanossilicatos surgiu o interesse de preparar novos zirconossilicatos microporosos por síntese hidrotérmica. Foram preparados dois novos materiais análogos dos minerais petarasite Na5Zr2Si3O18(Cl,OH)·2H2O (AV-3) e kostylevite, K2Si3O9·H2O (AV-8). Foram, também, obtidos análogos sintéticos dos minerais parakeldyshite e wadeite, por calcinação a alta temperatura de AV-3 e de umbite sintética. A heterogeneização de complexos organometálicos na superfície de materiais mesoporosos do tipo M41S permite associar a grande actividade catalítica e a presença de sítios activos localizados típicos dos complexos organometálicos, com a robustez e fácil separação, características dos materiais mesoporosos siliciosos. Nesta dissertação relata-se a derivatização dos materiais MCM-41 e MCM-48 através da reacção de [SiMe2{(h5-C5H4)2}]Fe e [SiMe2{(h5-C5H4)2}]TiCl2 com os grupos silanol das superfícies mesoporosas. Os materiais MCMs derivatizados com ansa-titanoceno foram testados na epoxidação de cicloocteno a 323 K na presença de hidrogenoperóxido de t-butilo. Estudou-se a heterogeneização dos sais de complexos com ligação metal-metal [Mo2(MeCN)10][BF4]4, [Mo2(m-O2CMe)2(MeCN)6][BF4]2 e [Mo2(m- O2CMe)2(dppa)2(MeCN)2][BF4]2 via imobilização nos canais do MCM-41. A imobilização dos catalisadores homogéneos na superfície do MCM-41 envolve a saída dos ligandos nitrilo lábeis, preferencialmente em posição axial, através da reacção com os grupos Si-OH da sílica. Verificou-se que a ligação Mo-Mo se mantém intacta nos produtos finais. É provável que estes materiais sejam eficientes catalisadores heterogéneos em reacções de polimerização. As técnicas de caracterização utilizadas nesta tese foram a difracção de raios-X de pós, a microscopia electrónica de varrimento, a espectroscopia de ressonância magnética nuclear do estado sólido (núcleos 13C, 23Na e 29Si), as espectroscopias de Raman e infravermelho com transformadas de Fourier, as análises termogravimétricas e as análises de adsorção de água e azoto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past few years a new generation of multifunctional nanoparticles (NPs) has been proposed for biomedical applications, whose structure is more complex than the structure of their predecessor monofunctional counterparts. The development of these novel NPs aims at enabling or improving the performance in imaging, diagnosis and therapeutic applications. The structure of such NPs comprises several components exhibiting various functionalities that enable the nanoparticles to perform multiple tasks simultaneously, such as active targeting of certain cells or compartmentalization, imaging and delivery of active drugs. This thesis presents two types of bimodal bio-imaging probes and describes their physical and chemical properties, namely their texture, structure, and 1H dynamics and relaxometry, in order to evaluate their potential as MRI contrast agents. The photoluminescence properties of these probes are studied, aiming at assessing their interest as optical contrast agents. These materials combine the properties of the trivalent lanthanide (Ln3+) complexes and nanoparticles, offering an excellent solution for bimodal imaging. The designed T1- type contrast agent are SiO2@APS/DTPA:Gd:Ln or SiO2@APS/PMN:Gd:Ln (Ln= Eu or Tb) systems, bearing the active magnetic center (Gd3+) and the optically-active ions (Eu3+ and Tb3+) on the surface of silica NPs. Concerning the relaxometry properties, moderate r1 increases and significant r2 increases are observed in the NPs presence, especially at high magnetic fields, due to susceptibility effects on r2. The Eu3+ ions reside in a single low-symmetry site, and the photoluminescence emission is not influenced by the simultaneous presence of Gd3+ and Eu3+. The presence of Tb3+, rather than Eu3+ ion, further increases r1 but decreases r2. The uptake of these NPs by living cells is fast and results in an intensity increase in the T1-weighted MRI images. The optical features of the NPs in cellular pellets are also studied and confirm the potential of these new nanoprobes as bimodal imaging agents. This thesis further reports on a T2 contrast agent consisting of core-shell NPs with a silica shell surrounding an iron oxide core. The thickness of this silica shell has a significant impact on the r2 and r2* relaxivities, and a tentative model is proposed to explain this finding. The cell viability and the mitochondrial dehydrogenase expression given by the microglial cells are also evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial activities are the major sources of pollution in all environments. Depending on the type of industry, various levels of organic and inorganic pollutants are being continuously discharged into the environment. Although, several kinds of physical, chemical, biological or the combination of methods have been proposed and applied to minimize the impact of industrial effluents, few have proved to be totally effective in terms of removal rates of several contaminants, toxicity reduction or amelioration of physical and chemical properties. Hence, it is imperative to develop new and innovative methodologies for industrial wastewater treatment. In this context nanotechnology arises announcing the offer of new possibilities for the treatment of wastewaters mainly based on the enhanced physical and chemical proprieties of nanomaterials (NMs), which can remarkably increase their adsorption and oxidation potential. Although applications of NMs may bring benefits, their widespread use will also contribute for their introduction into the environment and concerns have been raised about the intentional use of these materials. Further, the same properties that make NMs so appealing can also be responsible for producing ecotoxicological effects. In a first stage, with the objective of selecting NMs for the treatment of organic and inorganic effluents we first assessed the potential toxicity of nanoparticles of nickel oxide (NiO) with two different sizes (100 and 10-20 nm), titanium dioxide (TiO2, < 25 nm) and iron oxide (Fe2O3, ≈ 85x425 nm). The ecotoxicological assessment was performed with a battery of assays using aquatic organisms from different trophic levels. Since TiO2 and Fe2O3 were the NMs that presented lower risks to the aquatic systems, they were selected for the second stage of this work. Thus, the two NMs pre-selected were tested for the treatment of olive mill wastewater (OMW). They were used as catalyst in photodegradation systems (TiO2/UV, Fe2O3/UV, TiO2/H2O2/UV and Fe2O3/H2O2/UV). The treatments with TiO2 or Fe2O3 combined with H2O2 were the most efficient in ameliorating some chemical properties of the effluent. Regarding the toxicity to V. fischeri the highest reduction was recorded for the H2O2/UV system, without NMs. Afterwards a sequential treatment using photocatalytic oxidation with NMs and degradation with white-rot fungi was applied to OMW. This new approach increased the reduction of chemical oxygen demand, phenolic content and ecotoxicity to V. fischeri. However, no reduction in color and aromatic compounds was achieved after 21 days of biological treatment. The photodegradation systems were also applied to treat the kraft pulp mill and mining effluents. For the organic effluent the combination NMs and H2O2 had the best performances in reduction the chemical parameters as well in terms of toxicity reduction. However, for the mine effluent the best (TiO2/UV and Fe2O3/UV) were only able to significantly remove three metals (Zn, Al and Cd). Nonetheless the treatments were able of reducing the toxicity of the effluent. As a final stage, the toxicity of solid wastes formed during wastewater treatment with NMs was assessed with Chironomus riparius larvae, a representative species of the sediment compartment. Certain solid wastes showed the potential to negatively affect C. riparius survival and growth, depending on the type of effluent treated. This work also brings new insights to the use of NMs for the treatment of industrial wastewaters. Although some potential applications have been announced, many evaluations have to be performed before the upscaling of the chemical treatments with NMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photodegradation is considered to be one of the most important processes of elimination of pharmaceutical drugs from natural water matrices. The high consumption and discharge of these substances, in particular antidepressants, to the aquatic environment supports the need to study degradation processes. This dissertation aimed at studying the direct and indirect photodegradation of sertraline, an antidepressant known for its persistence in the environment, and the evaluation of the influence of environmentally relevant factors in its photodegradation. The photodegradation experiments were developed under simulated solar light and the irradiation times converted to summer sunny days (SSD), an equivalent time in natural environmental conditions. The direct photodegradation was evaluated in solutions of sertraline prepared in ultrapure water and the indirect photodegradation was studied through the addition of photosensitizers (humic substances, Fe(III), nitrates and oxygen). Further irradiation studies were perfomed in aqueous samples collected from two wastewater treatment plants, Vouga river and Ria de Aveiro. The samples were chemically characterized (dissolved organic carbon, nitrates and nitrites and iron determination and UV/Vis spectroscopy). The quantification of sertraline was done by HPLC-UV and photoproducts from direct photodegradation were identified by electrospray mass spectrometry. An observed direct photodegradation rate of sertraline of 0.0062 h-1 was determined, corresponding to a half-life time of 111 h (equivalent to 29 SSD). A significant influence of photosensitizers was observed, the best results being achieved in irradiations of sertraline with humic acids, obtaining a half-life time of 12 h. This was attributed to the hydrophobicity of this substance and higher absortivity in the UV/Vis wavelength, which promote processes of indirect photodegradation. The degradation of sertraline in natural samples was also enhanced comparatively to the direct photodegradation, achieving half-life times between 10 and 25h; the best results were achieved in samples from the primary treatment of a wastewater treatment plant and Ria de Aveiro, with half-life times of 10 and 16 h, respectively. A total of six photoproducts formed during the direct photodegradation of sertraline were identified, three of which were not yet identified in the literature. The main factors contributing to the degradation of sertraline were analysed but this was not fully accomplished, requiring further studies of the composition of the natural matrices and the combined influence of distinct photosensitizers during the irradiation. Nevertheless, it was concluded that the photodegradation of sertraline is greatly influenced by indirect photodegradation processes, promoted by the presence of photosensitizers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microplankton community, production, and respiration were studied alongside physical and chemical conditions at Sagres (SW Portugal) during the upwelling season, from May to September 2001. The sampling station was 5 km east of the upwelling center off Cabo S. Vicente, and 2 km of an offshore installation for bivalve aquaculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Biologia Marinha e Aquacultuta), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de mestrado em Química Tecnológica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continued growth in the volume of international trade poses considerable economic and sustainability challenges, particularly as transport routes become more congested and concern grows about the role of transport movements in accelerating climate change. Rail freight plays a major role in the inland transport of containers passing through the main British container ports, and potentially could play a more significant role in the future. However, there is little detailed understanding of the nature of this particular rail market, especially in terms its current operating efficiency. This paper examines container train service provision to/from the four main ports, based on analysis of a representative survey of more than 500 container trains between February and August 2007. The extent to which the existing capacity is utilised is presented, and scenarios by which the number of containers carried could be increased without requiring additional train service provision are modelled, to identify the theoretical potential for greater rail volumes. Finally, the paper identifies the challenges involved in achieving higher load factors, emphasising the importance both of wider supply chain considerations and government policy decision-making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment is a major sink for heavy metals in river, and poses significant risks not only to river quality but also to aquatic and benthic organisms. At present in the UK, there are no mandatory sediment quality standards. This is partly due to insufficient toxicity data but also due to problems with identification of appropriate sediment monitoring and analytical techniques. The aim of this research was to examine the sampling different river sediment compartments in order to monitor compliance with any future UK sediment environmental quality standards (EQS). The significance of sediment physical and chemical characteristics on sampling and analysis was also determined. The Ravensbourne River, a tributary of the River Thames located in the highly urbanised South Eastern area of London was used for this study. Sediment was collected from the bed using the Van Veer grab, the bank using hand trowel, and from the water column (suspended sediment) using the time integrated suspended tube sampler between the period of July 2010 and December, 2011. The result for the total metal extraction carried out using aqua regia found that there were no significant differences in the metal concentrations retained in the different compartments by the <63μm sediment fraction but there were differences between the 63μm-2mm fractions of the bed and bank. The metal concentration in the bed, bank and suspended sediment exceeded the draft UK sediment quality guidelines. Sequential extraction was also carried out to determine metal speciation in each sediment compartment using the Maiz et al. (1997) and Tessier et al. (1979) methods. The Maiz et al. (1997) found over 80% of the metals in each sediment compartment were not bioavailable, while Tessier et al. (1979) method found most of the metals to be associated with the Fe/Mn and the residual phase. The bed sediment compartment and the <2mm (<63μm + 63μm-2mm) fraction appears to be the most suitable sediment sample for sediment monitoring from this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localization is a fundamental task in Cyber-Physical Systems (CPS), where data is tightly coupled with the environment and the location where it is generated. The research literature on localization has reached a critical mass, and several surveys have also emerged. This review paper contributes on the state-of-the-art with the proposal of a new and holistic taxonomy of the fundamental concepts of localization in CPS, based on a comprehensive analysis of previous research works and surveys. The main objective is to pave the way towards a deep understanding of the main localization techniques, and unify their descriptions. Furthermore, this review paper provides a complete overview on the most relevant localization and geolocation techniques. Also, we present the most important metrics for measuring the accuracy of localization approaches, which is meant to be the gap between the real location and its estimate. Finally, we present open issues and research challenges pertaining to localization. We believe that this review paper will represent an important and complete reference of localization techniques in CPS for researchers and practitioners and will provide them with an added value as compared to previous surveys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.