872 resultados para phenotype ontology
Resumo:
Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.
Resumo:
Objectives The p38 mitogen-activated protein kinase (MAPK) signal transduction pathway is involved in a variety of inflammatory responses, including cytokine generation, cell differentiation proliferation and apoptosis. Here, we examined the effects of systemic p38 MAPK inhibition on cartilage cells and osteoarthritis (OA) disease progression by both in vitro and in vivo approaches. Methods p38 kinase activity was evaluated in normal and OA cartilage cells by measuring the amount of phosphorylated protein. To examine the function of p38 signaling pathway in vitro, normal chondrocytes were isolated and differentiated in the presence or absence of p38 inhibitor; SB203580 and analysed for chondrogenic phenotype. Effect of systemic p38 MAPK inhibition in normal and OA (induced by menisectomy) rats were analysed by treating animals with vehicle alone (DMS0) or p38 inhibitor (SB203580). Damage to the femur and tibial plateau was evaluated by modified Mankin score, histology and immunohistochemistry. Results Our in vitro studies have revealed that a down-regulation of chondrogenic and increase of hypertrophic gene expression occurs in the normal chondrocytes, when p38 is neutralized by a pharmacological inhibitor. We further observed that the basal levels of p38 phosphorylation were decreased in OA chondrocytes compared with normal chondrocytes. These findings together indicate the importance of this pathway in the regulation of cartilage physiology and its relevance to OA pathogenesis. At in vivo level, systematic administration of a specific p38 MAPK inhibitor, SB203580, continuously for over a month led to a significant loss of proteoglycan; aggrecan and cartilage thickness. On the other hand, SB203580 treated normal rats showed a significant increase in TUNEL positive cells, cartilage hypertrophy markers such as Type 10 collagen, Runt-related transcription factor and Matrix metalloproteinase-13 and substantially induced OA like phenotypic changes in the normal rats. In addition, menisectomy induced OA rat models that were treated with p38 inhibitor showed aggravation of cartilage damage. Conclusions In summary, this study has provided evidence that the component of the p38 MAPK pathway is important to maintain the cartilage health and its inhibition can lead to severe cartilage degenerative changes. The observations in this study highlight the possibility of using activators of the p38 pathway as an alternative approach in the treatment of OA.
Resumo:
Extracellular matrix regulates many cellular processes likely to be important for development and regression of corpora lutea. Therefore, we identified the types and components of the extracellular matrix of the human corpus luteum at different stages of the menstrual cycle. Two different types of extracellular matrix were identified by electron microscopy; subendothelial basal laminas and an interstitial matrix located as aggregates at irregular intervals between the non-vascular cells. No basal laminas were associated with luteal cells. At all stages, collagen type IV α1 and laminins α5, β2 and γ1 were localized by immunohistochemistry to subendothelial basal laminas, and collagen type IV α1 and laminins α2, α5, β1 and β2 localized in the interstitial matrix. Laminin α4 and β1 chains occurred in the subendothelial basal lamina from mid-luteal stage to regression; at earlier stages, a punctate pattern of staining was observed. Therefore, human luteal subendothelial basal laminas potentially contain laminin 11 during early luteal development and, additionally, laminins 8, 9 and 10 at the mid-luteal phase. Laminin α1 and α3 chains were not detected in corpora lutea. Versican localized to the connective tissue extremities of the corpus luteum. Thus, during the formation of the human corpus luteum, remodelling of extracellular matrix does not result in basal laminas as present in the adrenal cortex or ovarian follicle. Instead, novel aggregates of interstitial matrix of collagen and laminin are deposited within the luteal parenchyma, and it remains to be seen whether this matrix is important for maintaining the luteal cell phenotype.
Resumo:
Several studies have demonstrated an association between polycystic ovary syndrome (PCOS) and the dinucleotide repeat microsatellite marker D19S884, which is located in intron 55 of the fibrillin-3 (FBN3) gene. Fibrillins, including FBN1 and 2, interact with latent transforming growth factor (TGF)-β-binding proteins (LTBP) and thereby control the bioactivity of TGFβs. TGFβs stimulate fibroblast replication and collagen production. The PCOS ovarian phenotype includes increased stromal collagen and expansion of the ovarian cortex, features feasibly influenced by abnormal fibrillin expression. To examine a possible role of fibrillins in PCOS, particularly FBN3, we undertook tagging and functional single nucleotide polymorphism (SNP) analysis (32 SNPs including 10 that generate non-synonymous amino acid changes) using DNA from 173 PCOS patients and 194 controls. No SNP showed a significant association with PCOS and alleles of most SNPs showed almost identical population frequencies between PCOS and control subjects. No significant differences were observed for microsatellite D19S884. In human PCO stroma/cortex (n = 4) and non-PCO ovarian stroma (n = 9), follicles (n = 3) and corpora lutea (n = 3) and in human ovarian cancer cell lines (KGN, SKOV-3, OVCAR-3, OVCAR-5), FBN1 mRNA levels were approximately 100 times greater than FBN2 and 200–1000-fold greater than FBN3. Expression of LTBP-1 mRNA was 3-fold greater than LTBP-2. We conclude that FBN3 appears to have little involvement in PCOS but cannot rule out that other markers in the region of chromosome 19p13.2 are associated with PCOS or that FBN3 expression occurs in other organs and that this may be influencing the PCOS phenotype.
Massively parallel sequencing and analysis of expressed sequence tags in a successful invasive plant
Resumo:
Background Invasive species pose a significant threat to global economies, agriculture and biodiversity. Despite progress towards understanding the ecological factors associated with plant invasions, limited genomic resources have made it difficult to elucidate the evolutionary and genetic factors responsible for invasiveness. This study presents the first expressed sequence tag (EST) collection for Senecio madagascariensis, a globally invasive plant species. Methods We used pyrosequencing of one normalized and two subtractive libraries, derived from one native and one invasive population, to generate an EST collection. ESTs were assembled into contigs, annotated by BLAST comparison with the NCBI non-redundant protein database and assigned gene ontology (GO) terms from the Plant GO Slim ontologies. Key Results Assembly of the 221 746 sequence reads resulted in 12 442 contigs. Over 50 % (6183) of 12 442 contigs showed significant homology to proteins in the NCBI database, representing approx. 4800 independent transcripts. The molecular transducer GO term was significantly over-represented in the native (South African) subtractive library compared with the invasive (Australian) library. Based on NCBI BLAST hits and literature searches, 40 % of the molecular transducer genes identified in the South African subtractive library are likely to be involved in response to biotic stimuli, such as fungal, bacterial and viral pathogens. Conclusions This EST collection is the first representation of the S. madagascariensis transcriptome and provides an important resource for the discovery of candidate genes associated with plant invasiveness. The over-representation of molecular transducer genes associated with defence responses in the native subtractive library provides preliminary support for aspects of the enemy release and evolution of increased competitive ability hypotheses in this successful invasive. This study highlights the contribution of next-generation sequencing to better understanding the molecular mechanisms underlying ecological hypotheses that are important in successful plant invasions.
Resumo:
Once melanoma metastasizes, no effective treatment modalities prolong survival in most patients. This notorious refractoriness to therapy challenges investigators to identify agents that overcome melanoma resistance to apoptosis. Whereas many survival pathways contribute to the death-defying phenotype in melanoma, a defect in apoptotic machinery previously highlighted inactivation of Apaf-1, an apoptosome component engaged after mitochondrial damage. During studies involving Notch signaling in melanoma, we observed a gamma-secretase tripeptide inhibitor (GSI; z-Leu-Leu-Nle-CHO), selected from a group of compounds originally used in Alzheimer's disease, induced apoptosis in nine of nine melanoma lines. GSI only induced G2-M growth arrest (but not killing) in five of five normal melanocyte cultures tested. Effective killing of melanoma cells by GSI involved new protein synthesis and a mitochondrial-based pathway mediated by up-regulation of BH3-only members (Bim and NOXA). p53 activation was not necessary for up-regulation of NOXA in melanoma cells. Blocking GSI-induced NOXA using an antisense (but not control) oligonucleotide significantly reduced the apoptotic response. GSI also killed melanoma cell lines with low Apaf-1 levels. We conclude that GSI is highly effective in killing melanoma cells while sparing normal melanocytes. Direct enhancement of BH3-only proteins executes an apoptotic program overcoming resistance of this lethal tumor. Identification of a p53-independent apoptotic pathway in melanoma cells, including cells with low Apaf-1, bypasses an impediment to current cytotoxic therapy and provides new targets for future therapeutic trials involving chemoresistant tumors.
Resumo:
Traffic Simulation models tend to have their own data input and output formats. In an effort to standardise the input for traffic simulations, we introduce in this paper a set of data marts that aim to serve as a common interface between the necessaary data, stored in dedicated databases, and the swoftware packages, that require the input in a certain format. The data marts are developed based on real world objects (e.g. roads, traffic lights, controllers) rather than abstract models and hence contain all necessary information that can be transformed by the importing software package to their needs. The paper contains a full description of the data marts for network coding, simulation results, and scenario management, which have been discussed with industry partners to ensure sustainability.
Resumo:
While much narrative inquiry is concerned with issues of self and identity, doing study on the processes (the how) of self-making offers ongoing challenges to methodology. This article explores the creation of a dialogic space that assisted young adolescents to write about themselves and their daily lives using email journals as an alternative to face-to-face interviews. With the researcher acting as a listener-responder, and in the absence of researcher-designed questions, a dynamic field was opened up for participant-led self-making to emerge over a six month period of self-reflective written expression. The article describes a shared email relationship based on a dialogic pattern of thinking, writing, listening and response intended to foster participants’ voices as ontological narratives of self. Findings show the use of email journals created a synergy for self-disclosure and a safe space for self-expression where the willingness of participants to be themselves was encouraged. The self-representations of a specific group of gifted young adolescents thus emerged as written versions of “who” they are —offering data that differs from interview approaches and contributing to discussion of the value of ontology narratives.
Resumo:
Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: the cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched.
Resumo:
The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved, multifunctional group of cochaperones that perform diverse cellular functions ranging from proliferation to growth arrest and cell death in yeast, in mammals, and, as recently observed, in plants. The Arabidopsis genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. In the present study we show that an Arabidopsis BAG, AtBAG7, is a uniquely localized endoplasmic reticulum (ER) BAG that is necessary for the proper maintenance of the unfolded protein response (UPR). AtBAG7was shown to interact directly in vivo with themolecular chaperone, AtBiP2, by bimolecular fluorescence complementation assays, and the interaction was confirmed by yeast two-hybrid assay. Treatment with an inducer of UPR, tunicamycin, resulted in accelerated cell death of AtBAG7-null mutants. Furthermore, AtBAG7 knockouts were sensitive to known ER stress stimuli, heat and cold. In these knockouts heat sensitivity was reverted successfully to the wild-type phenotype with the addition of the chemical chaperone, tauroursodexycholic acid (TUDCA). Real-time PCR of ER stress proteins indicated that the expression of the heat-shock protein, AtBiP3, is selectively up-regulated in AtBAG7-null mutants upon heat and cold stress. Our results reveal an unexpected diversity of the plant's BAG gene family and suggest that AtBAG7 is an essential component of the UPR during heat and cold tolerance, thus confirming the cytoprotective role of plant BAGs.
Resumo:
Nowadays, everyone can effortlessly access a range of information on the World Wide Web (WWW). As information resources on the web continue to grow tremendously, it becomes progressively more difficult to meet high expectations of users and find relevant information. Although existing search engine technologies can find valuable information, however, they suffer from the problems of information overload and information mismatch. This paper presents a hybrid Web Information Retrieval approach allowing personalised search using ontology, user profile and collaborative filtering. This approach finds the context of user query with least user’s involvement, using ontology. Simultaneously, this approach uses time-based automatic user profile updating with user’s changing behaviour. Subsequently, this approach uses recommendations from similar users using collaborative filtering technique. The proposed method is evaluated with the FIRE 2010 dataset and manually generated dataset. Empirical analysis reveals that Precision, Recall and F-Score of most of the queries for many users are improved with proposed method.
Resumo:
A cDNA corresponding to a transcript induced in culture by N starvation, was identified in Colletotrichum gloeosporioides by a differential hybridisation strategy. The cDNA comprised 905 bp and predicted a 215 aa protein; the gene encoding the cDNA was termed CgDN24. No function for CgDN24 could be predicted by database homology searches using the cDNA sequence and no homologues were found in the sequenced fungal genomes. Transcripts of CgDN24 were detected in infected leaves of Stylosanthes guianensis at stages of infection that corresponded with symptom development. The CgDN24 gene was disrupted by homologous recombination and this led to reduced radial growth rates and the production of hyphae with a hyperbranching phenotype. Normal sporulation was observed, and following conidial inoculation of S. guianensis, normal disease development was obtained. These results demonstrate that CgDN24 is necessary for normal hyphal development in axenic culture but dispensable for phytopathogenicity. © 2005 Elsevier GmbH. All rights reserved.
Resumo:
Twin studies offer the opportunity to determine the relative contribution of genes versus environment in traits of interest. Here, we investigate the extent to which variance in brain structure is reduced in monozygous twins with identical genetic make-up. We investigate whether using twins as compared to a control population reduces variability in a number of common magnetic resonance (MR) structural measures, and we investigate the location of areas under major genetic influences. This is fundamental to understanding the benefit of using twins in studies where structure is the phenotype of interest. Twenty-three pairs of healthy MZ twins were compared to matched control pairs. Volume, T2 and diffusion MR imaging were performed as well as spectroscopy (MRS). Images were compared using (i) global measures of standard deviation and effect size, (ii) voxel-based analysis of similarity and (iii) intra-pair correlation. Global measures indicated a consistent increase in structural similarity in twins. The voxel-based and correlation analyses indicated a widespread pattern of increased similarity in twin pairs, particularly in frontal and temporal regions. The areas of increased similarity were most widespread for the diffusion trace and least widespread for T2. MRS showed consistent reduction in metabolite variation that was significant in the temporal lobe N-acetylaspartate (NAA). This study has shown the distribution and magnitude of reduced variability in brain volume, diffusion, T2 and metabolites in twins. The data suggest that evaluation of twins discordant for disease is indeed a valid way to attribute genetic or environmental influences to observed abnormalities in patients since evidence is provided for the underlying assumption of decreased variability in twins.