968 resultados para pharmacology
Resumo:
Five minor sesquiterpenes (1-5) with two novel carbon skeletons, together with a minor new oplopane sesquiterpene ( 6), have been isolated from the brown alga Dictyopteris divaricata. By means of spectroscopic data including IR, HRMS, 1D and 2D NMR, and CD, their structures including absolute configurations were assigned as (+)-(1R, 5S, 6S, 9R)3- acetyl-1-hydroxy-6-isopropyl-9-methylbicyclo[4.3.0] non-3-ene ( 1), (+)-(1R, 3S, 4S, 5R, 6S, 9R)-3-acetyl-1,4-dihydroxy-6- isopropyl-9-methylbicyclo[4.3.0] nonane (2), (+)-(1R, 3R, 4R, 5R, 6S, 9R)-3-acetyl-1,4-dihydroxy-6-isopropyl-9-methylbicyclo[ ;4.3.0] nonane ( 3), (+)-(1S, 2R, 6S, 9R)-1-hydroxy-2-(1-hydroxyethyl)-6-isopropyl-9-methylbicyclo[4.3.0] non-4-en-3-one (4), (-)-( 5S, 6R, 9S)-2-acetyl-5-hydroxy-6-isopropyl-9-methylbicyclo[4.3.0] non-1-en-3-one ( 5), and (-)-( 1S, 6S, 9R)- 4-acetyl- 1-hydroxy-6-isopropyl-9-methylbicyclo[ 4.3.0] non-4-en-3-one ( 6). Biogenetically, the carbon skeletons of 1-6 may be derived from the co-occurring cadinane skeleton by different ring contraction rearrangements. Compounds 1-6 were inactive (IC50 > 10 mu g/mL) against several human cancer cell lines.
Resumo:
Three bisnorsesquiterpenes (1-3) with novel carbon skeletons and a norsesquiterpene (4) have been isolated from the brown alga Dictyopteris divaricata. By means of spectroscopic data including IR, HRMS, 1D and 2D NMR techniques, single-crystal X-ray diffraction, and CD, their structures including absolute configurations were proposed as (+)-1R,6S,9R)-1-hydroxyl-6-isopropyl-9-methylbicyclo[4.3.0]non-4-en3-one (1), (-)-(1S,6S,9R)-1-hydroxyl-6-isopropyl-9-methylbicyclo[4.3.0] non-4-en-3-one (2), (+)-(5S,6R,9S)5-hydroxyl-6-isopropyl-9-methylbicyclo [4.3.01 non-1-en-3-one (3), and (-)-(1R,7S,10R)-1-hydroxy-1lnorcadinan-5-en-4-one (4). Biogenetically, the carbon skeleton of 1-3 may be derived from the co-occurring cadinane skeleton by ring contraction and loss of two carbon units, and compound 4 from the oxidation of cadinane derivatives. Compounds 1-4 were inactive (IC50 > 10 mu g/mL) against several human cancer cell lines including lung adenocarcinoma (A549), stomach cancer (BGC-823), breast cancer (MCF-7), hepatoma (Bel7402), and colon cancer (HCT-8) cell lines.
Resumo:
Seven new sesquiterpenes (1-7), together with seven known sesquiterpenes, aplysin (8), aplysinol (9), gossonorol (10), 7,10-epoxy-ar-bisabol-11-ol (11), 10-epi-7,10-epoxy-ar-bisabol-11-ol (12), johnstonol (13), and laurebiphenyl (14), have been isolated from the red alga Laurencia tristicha. The structures of new compounds were established as laur-11-en-2,10-diol (1), laur-11-en-10-ol (2), laur-11-en-1,10-diol (3), 4-bromo-1,10-epoxylaur-11-ene (4), cyclolauren-2-ol (5), laurentristich-4-ol (6), and ar-bisabol-9-en-7,11-diol (7) by means of spectroscopic methods including IR, HRMS, and ID and 21) NMR techniques. Compound 6 possessed a novel rearranged skeleton. All compounds were tested against several human cancer cell lines including lung adenocarcinoma (A549), stomach cancer (BGC-823), hepatoma (Bel 7402), colon cancer (HCT-8), and HELA cell lines. Laurebiphenyl (14) showed moderate cytotoxicity against all tested cell lines, with IC50 values of 1.68, 1.22, 1.91, 1.77, and 1.61 mu g/mL, respectively. Other compounds were inactive (IC50 > 10 mu g/mL).
Resumo:
Eight new bromophenol derivatives, 2,3-dibromo-4,5-dihydroxybenzyl methyl sulfoxide (1), 4-(2,3-dibromo-4,5-dihydroxyphenyl)-3-butene-2-one (2), 2-(3-bromo-5-hydroxy-4-methoxyphenyl)-3-(2,3-dibromo-4,5-dihydroxyphenyl)propionic acid (3), 2-(3-bromo-5-hydroxy-4-methoxyphenyl)-3-(2,3-dibromo-4,5-dihydroxyphenyl)propionic acid methyl ester (4), 2-phenyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)propionic acid (5), 4'-methoxy-2",3',3"-tribromo-4",5',5"-trihydroxydiphenylacetic acid (6), and 3-bromo-5-hydroxy-4-methoxyphenylacetic acid (7) and its methyl ester (8), together with a known bromophenol, 3-bromo-5-hydroxy4-methoxybenzoic acid (9), were isolated from the red alga Rhodomela confervoides. Their structures were elucidated by spectroscopic methods including IR, EIMS, FABMS, ESIMS, HRFABMS, HRESIMS, 1D and 2D NMR, and single-crystal X-ray structure analysis. Compounds 1-4, 8, and 9 were found inactive against several human cancer cell lines and microorganisms.
Resumo:
Three new bromophenols coupled with pyroglutamic acid derivatives and one bromophenol coupled with deoxyguanosine were obtained from the red alga Rhodomela confervoides. By spectroscopic methods including 2D NMR and single-crystal X-ray structure analysis their structures were elucidated as N-(2,3-dibromo-4,5-dihydroxybenzyl)methyl pyroglutamate (1), N-(2,3-dibromo-4,5-dihydroxybenzyl)pyroglutamic acid (2), N-[3-bromo-2-(2,3-dibromo-4,5-dihydroxybenzyl)-4,5-dihydroxybenzyllmethyl pyroglutamate (3), and 2-N-(2,3-dibromo-4,5-dihydroxybenzylamino)deoxyguanosine (4), respectively. Compounds 1-4 were evaluated against several microorganisms and human cancer cell lines, but found inactive. To our knowledge this is the first report of bromophenols coupled with amino acid or nucleoside derivatives through the C-N bond.
Resumo:
Parkinson's disease is a neurodegenerative disorder of uncertain pathogenesis characterized by a loss of dopaminergic neurons in substantia nigra pars compacta, and can be modeled by the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Oxidative stress may contribute to MPTP- and Parkinson's disease-related neurodegeneration. Fucoidan is a sulfated polysaccharide extracted from brown seaweeds which possesses a wide variety of biological activities including potent antioxidative effects. Here we investigated the effect of fucoidan treatment on locomoter activities of animals, striatal dopamine and its metabolites and survival of nigral dopaminergic neurons in MPTP-induced animal model of Parkinsonism in C57/BL mice in vivo and on the neuronal damage induced by 1-methyl-4-phenylpyridinium (MPP+) in vitro, and to study the possible mechanisms. When administered prior to MPTP, fucoidan reduced behavioral deficits, increased striatal dopamine and its metabolites levels, reduced cell death, and led to a marked increase in tyrosine hydroxylase expression relative to mice treated with MPTP alone. Furthermore, we found that fucoidan inhibited MPTP-induced lipid peroxidation and reduction of antioxidant enzyme activity. In addition, pre-treatment with fucoidan significantly protected against MPP+-induced damage in MN9D cells. Taken together, these findings suggest that fucoidan has protective effect in MPTP-induced neurotoxicity in this model of Parkinson's disease via its antioxidative activity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A novel polyhydroxyl sterol ( 1) along with one known polyhydroxyl sterol (2), and two known monoglycosides, asterosaponin P-1 (3) and its desulfated monoglycoside (4), have been isolated from the whole bodies of a common Pacific starfish Asterina pectinifera. The structure of the new polyhydroxyl sterol was determined as 15beta, 16beta-isopropylidenedioxy-5alpha-cholestane-3beta, 4beta, 6alpha, 7alpha, 8,26-hexaol by spectroscopic methods, including FABMS, HR-FABMS, 1D and 2D NMR techniques.
Resumo:
Fucoidan, the sulphated polysaccharide extracted from brown seaweed, has various biological activities. The effect of fucoidan on the formation of proteinuria and renal functions in active Heymann nephritis was investigated in this study. Active Heymann nephritis was induced by administering brush border protein of rat proximal uriniferous tubules (FX1A). Fucoidan was administered by oral intubation to Heymann nephritis rats at three doses (50, 100 and 200 mg/kg) once daily for 4 weeks. The elevated urinary protein excretion and plasma creatinine due to the induction of Heymann nephritis were significantly reduced by fucoidan at doses of 100 and 200 mg/kg. The results indicated that fucoidan has a renoprotective effect on active Heymann nephritis and is a promising therapeutic agent for nephritis. Copyright (c) 2005 John Wiley F Sons, Ltd.
Resumo:
lambda-Carrageenan is a sulfated galactan isolated from some red algae and have been reported to have many kinds of biological activities. lambda-Carrageenan from Chondrus ocellatus, an important economic alga in China and many other parts of the world, was degraded by microwave, and obtained five products that have different molecular weight: 650, 240, 140, 15, 9.3 kDa. Analytical results confirmed that microwave degradation might not change the chemical components and structure of polysaccharides under certain condition. In this study, tumor-inhibiting activities, weight of immune organ, nature killer cells activity, lymphocyte proliferation ratio and pathological slice of spleen and tumor cells from the control group and lambda-carrageenan-treated mice of transplanted S 180 and H22 tumor were investigated. The results indicated that the five lambda-carrageenan samples all showed antitumor and immunomodulation activities in different degree. Molecular weight of polysaccharides had notable effect on the activities. In addition, their antitumor and immunomodulation have some relevance and the five lambda-carrageenans probably inhibited tumor by means of activating the immunocompetence of the body. Among all the experiment results, samples with the highest activities are PC4 and PC5 whose molecular weight are 15 and 9.3 kDa. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Ulvan, a sulfated polysaccharide from Ulva pertusa, was degraded to yield two low molecular weight fractions U1 and U2. The molecular weights of ulvan and its fractions were determined and varied from 151.6 to 28.2 kDa. They were fed to rats on a hypercholesterolemic diet for 21 days to evaluate and compare the antihyperlipidemic actions. Ulvan-based diet significantly lowered the levels of serum total cholesterol (-45.2%, P < 0.05) and low density lipoprotein cholesterol (LDL-cholesterol, -54.1%, P < 0.05). While U1- and U2-based diets significantly elevated the levels of serum high density lipoprotein cholesterol (HDL-cholesterol, +22.0% for U1, not significant; +61.0% for U2; P < 0.05) and reduced triglyceride (TG, -82.4% for U1, -77.7% for U2; P < 0.05) in rats as compared to control diet. In addition, consumptions of various ulvans significantly increased fecal bile acid excrement. The results indicated that ulvans with different molecular weights exhibited diverse effects on lipid metabolism. The high molecular weight ulvan was effective in serum total and LDL-cholesterol, whereas low molecular weight fractions were in TG and HDL-cholesterol. The fractions were considered to be more beneficial to hyperlipidemia associated with diabetes over ulvan. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Sulfated polysaccharide fraction F2 from Porphyra haitanesis (Rhodephyta) showed inhibitory effect on the in vitro lipid peroxidation. In the present study, the age-related changes in the antioxidant enzyme activity, lipid peroxidation, and total antioxidant capacity (TAOC) in different organs in mice were investigated and the in vivo antioxidant effect of F2 in aging mice was checked. Increased endogenous lipid peroxidation and decreased TAOC were observed in aging mice. Intraperitoneal administration of F2 significantly decreased the lipid peroxidation in a dose-dependent manner. F2 treatment increased TAOC and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in all the organs tested in aging mice. It is concluded that the sulfated polysaccharide fraction F2 can be used in compensating the decline in TAOC and the activities of antioxidant enzymes and thereby reduces the risks of lipid peroxidation. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Known only in the Phaeophyceae, phlorotannins (brown algal polyphenols) are a class of natural products with potential uses in pharmacology. This study reports that phlorotannins from Sargassum kjellmanianum can prevent fish oil from rancidification; the antioxidation activity was about 2.6 times higher than that of 0.02% BHT (tertbutyl-4-hydroxytoluene).
Resumo:
Polysaccharides isolated from Porphyra (porphyran) have been known to have diverse biological activities, including immunomodulatory and antioxidant activities. The molecular weight-antiaging activity relationship of degraded porphyrans was examined in this study. Natural porphyran was extracted from P. haitanensis, and then was degraded into different molecular weight fractions, P1 molecular weight 49 kDa, P2 molecular weight 30 kDa, P3 molecular weight 8.2 kDa, by free radical. The influence on life span and vitality of porphyrans were carried out on Drosophila melanogaster. We found that all the degraded porphyrans and natural porphyran (P), added daily to the diet, can significantly increase the life span of D. melanogaster, except for P3. Among them, P1 exhibited the most prolonging life span activity. Furthermore, vitality of middle-aged flies (assessed by measuring their mating capacity) receiving porphyrans was increased considerably in comparison with the controls. Finally, in the heat-stress test, we observed a remarkable increase in survival time, especially in P3-diet groups. These results suggest that porphyrans may be effective in reducing the rate of the aging process and molecular weight has important influence on the effects. It seems that P1 and P2, possessed higher molecular weight, may be more useful in normal metabolic condition and P3, possessed the lowest molecular weight, may be more beneficial for D. melanogaster in stress condition. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The nucleoside analogue cordycepin (3'-deoxyodenosine, 3'-dA), one of the components of cordyceps militaris, has been shown to inhibit the growth of various tumor cells. However, the probable mechanism is still obscure. In this study, the inhibition of cell growth and changes in protein expression induced by cordycepin were investigated in BEL-7402 cells. Using the MTT assay and flow cytometry, we found that cordycepin inhibits cell viability and induces apoptosis in BEL 7402 cells. Additionally. the proteins were separated using two-dimensional polyacrylamide gel electrophoresis, and eight proteins were found to be significantly, affected by cordycepin compared to untreated control; among them, two were downregulated and six were upregulated. Of the eight proteins, six were identified with peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after in-gel trypsin digestion. These proteins are involved in various aspects of cellular metabolism. It is suggested that the effect of cordycepin on the growth of tumor cells is significantly related to the metabolism-associated protein expression induced by cordycepin. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.