910 resultados para personal characteristics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study was undertaken to characterize the deformation behavior of a superplastic 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) over a wide range of strain rates, temperatures and grain sizes. The experimental data were analyzed in terms of the following equation for high temperature deformation: Image Full-size image ∞ σn d−pexp(−Q/RT), where Image Full-size image is the strain rate, σ is the flow stress, d is the grain size, Q is the activation energy, R is the gas constant, T is the absolute temperature, and n and p are constants termed the stress exponent and the inverse grain size exponent, respectively. The experimental data over a wide range of stresses revealed a transition in stress exponent. Deformation in the low and high stress regions was associated with n not, vert, similar 3 and p not, vert, similar 1, and n not, vert, similar 2 and p not, vert, similar 3, respectively. The transition stress between the two regions decreased with increasing grain size. The activation energy was similar for both regions with a value of not, vert, similar 550 kJ mol−1. Microstructural measurements revealed that grains remained essentially equiaxed after the accumulation of large strains, and very limited concurrent grain growths occurred in most experiments. Assessment of possible rate controlling creep mechanisms and comparison with previous studied indicate that in the n not, vert, similar 2 region, deformation occurs by a grain boundary sliding process whose rate is independent of impurity content. Deformation in the n not, vert, similar 3 region is controlled by an interface reaction that is highly sensitive to impurity content. It is concluded that an increase in impurity content increases yttrium segregation to grain boundaries, which enhances the rate of the interface reaction, thereby decreasing the apparent transition stress between the n not, vert, similar 2 and n not, vert, similar 3 regions. This unified approach incorporating two sequential mechanisms can rationalize many of the apparently dissimilar results that have been reported previously for deformation of 3YTZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to metallic alloys, the mechanical characteristics of superplastic ceramics are very sensitive to minor changes in levels of trace impurities. In the present study, the mechanical behavior of a 2 mol% yttria stabilized tetragonal zirconia was studied in tension and compression in two batches of material, with small variations in levels of trace impurities, to examine the influence of stress axis and impurity content on the deformation behavior. The mechanical properties of the material were characterized in terms of the expression: (epsilon)over dot proportional to sigma(n) where (epsilon)over dot is the strain rate, sigma is the stress and n is termed the stress exponent. The mechanical behavior of the ceramic was identical in tension and compression, for a material with a given level of impurity. The high purity specimens exhibited a transition from a stress exponent of similar to 3 to similar to 2 with an increase in stress, whereas the low purity material displayed only n similar to 2 behavior over the entire stress range studied. Detailed high resolution and analytical electron microscopy studies revealed that there was no amorphous phase at interfaces in both batches of material; however, segregation of Al at interfaces was detected only in the low purity material. The observed transition in stress exponents can be rationalized in terms of two sequential mechanisms: grain boundary sliding with n similar to 2 and interface reaction controlled grain boundary sliding with n similar to 3. The transition from n similar to 3 to similar to 2 occurred at lower stresses with an increase in the grain size and a decrease in the purity level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially available mullite (3Al(2)O(3). 2SiO(2)) powders containing oxides of calcium and iron as impurities, have been made suitable for plasma spraying by using an organic binder. Stainless steel substrates covered with Ni-22Cr-10Al-1.0Y bond coat were spray coated with mullite, The 425 mu m thick coatings were subjected to thermal shock cycling under burner rig conditions between 1000 and 1200 degrees C and less than 200 degrees C with holding times of 1, 5, and 30 min. While the coatings withstood as high as 1000 shock cycles without failure between 1000 and 200 degrees C, spallation occurred early at 120 cycles when shocked from 1200 degrees C, The coatings appeared to go through a process of self erosion at high temperatures resulting in loss of material. Also observed were changes attributable to melting of the silicate grains, which smooth down the surface. Oxidation of the bond coat did not appear to influence the failure, These observations were supported by detailed scanning electron microscopy and quantitative chemical composition analysis, differential thermal analysis, and surface roughness measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the fault-tolerant parameters and topological properties of a hierarchical network of hypercubes. We take a close look at the Extended Hypercube (EH) and the Hyperweave (HW) architectures and also compare them with other popular architectures. These two architectures have low diameter and constant degree of connectivity making it possible to expand these networks without affecting the existing configuration. A scheme for incrementally expanding this network is also presented. We also look at the performance of the ASCEND/DESCEND class of algorithms on these architectures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To circumvent the practical difficulties in research on tropical rainforest lianas in their natural habitat due to prevailing weather conditions, dense camouflaging vegetation and problems in transporting equipment for experimental investigations, Entada pursaetha DC (syn. Entada scandens Benth., Leguminosae) was grown inside a research campus in a dry subtropical environment. A solitary genet has attained a gigantic size in 17 years, infesting crowns of semi-evergreen trees growing in an area roughly equivalent to 1.6 ha. It has used aerially formed, cable-like stolons for navigating and spreading its canopy across tree gaps. Some of its parts which had remained unseen in its natural habitat due to dense vegetation are described. The attained size of this liana in a climatically different environment raises the question as to why it is restricted to evergreen rainforests. Some research problems for which this liana will be useful are pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elucidation of the detailed structural features and sequence requirements for iv helices of various lengths could be very important in understanding secondary structure formation in proteins and, hence. in the protein folding mechanism. An algorithm to characterize the geometry of an alpha helix from its C-alpha coordinates has been developed and used to analyze the structures of long cu helices (number of residues greater than or equal to 25) found in globular proteins, the crystal structure coordinates of which are available from the Brookhaven Protein Data Bank, Ail long a helices can be unambiguously characterized as belonging to one of three classes: linear, curved, or kinked, with a majority being curved. Analysis of the sequences of these helices reveals that the long alpha helices have unique sequence characteristics that distinguish them from the short alpha helices in globular proteins, The distribution and statistical propensities of individual amino acids to occur in long alpha heices are different from those found in short alpha helices, with amino acids having longer side chains and/or having a greater number of functional groups occurring more frequently in these helices, The sequences of the long alpha helices can be correlated with their gross structural features, i.e., whether they are curved, linear, or kinked, and in case of the curved helices, with their curvature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attractive microstructural possibility for enhancing the ductility of high-strength nanocrystals is to develop a bimodal grain-size distribution, in which the fine grains provide strength, and the coarser grains enable strain hardening. Annealing of nanocrystalline Ni over a range of temperatures and times led to microstructures with varying volume fractions of coarse grains and a change in texture. Tensile tests revealed a drastic reduction in ductility with increasing volume fraction of coarse grains. The reduction in ductility may be related to the segregation of sulphur to grain boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric-motored personal mobility devices (PMDs) are appearing on Australian roads. While legal to import and own, their use is typically illegal for adult riders within the road transport system. However, these devices could provide an answer to traffic congestion by getting people out of cars for short trips (“first-and-last mile” travel). City of Ryde council, Macquarie University, and Transport for NSW examined PMD use within the road transport system. Stage 1 of the project examined PMD use within a controlled pedestrian environment on the Macquarie University campus. Three PMD categories were used: one-wheelers (an electric unicycle, the Solowheel); two-wheelers (an electric scooter, the Egret); and three-wheelers (the Qugo). The two-wheeled PMD was most effective in terms of flexibility. In contrast, the three-wheeled PMD was most effective in terms of speed. One-wheeled PMD riders were very satisfied with their device, especially at speed, but significant training and practice was required. Two-wheeled PMD riders had less difficulty navigating through pedestrian precincts and favoured the manoeuvrability of the device as the relative narrowness of the two-wheeled PMD made it easier to use on a diversity of path widths. The usability of all PMDs was compromised by the weight of the devices, difficulties in ascending steeper gradients, portability, and parking. This was a limited trial, with a small number of participants and within a unique environment. However, agreement has been reached for a Stage 2 extension into the Macquarie Park business precinct for further real-world trials within a fully functional road transport system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, two nozzle configurations are used for spray deposition, convergent nozzle (nozzle-A), and convergent nozzle with 2 mm parallel portion attached at its end (nozzle-C) without changing the exit area. First, the conditions for subambient aspiration pressure, i.e., pressure at the tip of the melt delivery tube, are established by varying the protrusion length of the melt delivery tube at different applied gas pressures for both of the nozzles. Using these conditions, spray deposits in a reproducible manner are successfully obtained for 7075 Al alloy. The effect of applied gas pressure, flight distance, and nozzle configuration on various characteristics of spray deposition, viz., yield, melt flow rate, and gas-to-metal ratio, is examined. The over-spray powder is also characterized with respect to powder size distribution, shape, and microstructure. Some of the results are explained with the help of numerical analysis presented in an earlier article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unresolved goal in face perception is to identify brain areas involved in face processing and simultaneously understand the timing of their involvement. Currently, high spatial resolution imaging techniques identify the fusiform gyrus as subserving processing of invariant face features relating to identity. High temporal resolution imaging techniques localize an early latency evoked component—the N/M170—as having a major generator in the fusiform region; however, this evoked component is not believed to be associated with the processing of identity. To resolve this, we used novel magnetoencephalographic beamformer analyses to localize cortical regions in humans spatially with trial-by-trial activity that differentiated faces and objects and to interrogate their functional sensitivity by analyzing the effects of stimulus repetition. This demonstrated a temporal sequence of processing that provides category-level and then item-level invariance. The right fusiform gyrus showed adaptation to faces (not objects) at ∼150 ms after stimulus onset regardless of face identity; however, at the later latency of ∼200–300 ms, this area showed greater adaptation to repeated identity faces than to novel identities. This is consistent with an involvement of the fusiform region in both early and midlatency face-processing operations, with only the latter showing sensitivity to invariant face features relating to identity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental results on a loop heat pipe, using R134a as the working fluid, indicates that the liquid inventory in the compensation chamber can significantly influence the operating characteristics. The large liquid inventory in the compensation chamber, under terrestrial conditions, can result in loss of thermal coupling between the compensation chamber and the evaporator core. This causes the operating temperature to increase monotonically. This phenomenon, which has been experimentally observed, is reported in this paper. A theoretical model to predict the steady-state performance of a loop heat pipe with a weak thermal link between the compensation chamber and the core, as observed in the experiment, is also presented. The predicted and the experimentally determined temperatures correlate well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to compare kinematics and kinetics during walking for healthy subjects using unstable shoes with different designs. Ten subjects participated in this study, and foot biomechanical data during walking were quantified using motion analysis system and a force plate. Data were collected for unstable shoes condition after accommodation period of one week. With soft material added in the heel region, the peak impact force was effectively reduced when compared among similar shapes. In addition, the soft material added in the rocker bottom showed more to be in dorsiflexed position during the initial stance. The shoe with three rocker curves design reduced the contact area in the heel strike, which may result in increasing human body forward speed. Further studies shall be carried out after adapting to long periods of wearing unstable shoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescence has been detected in cyclic tetrapeptide disulfides containing only nonaromatic residues. Excitation of the S-S- n-cr transition between 280 and 290 nm leads to.ernission in the region 300-340 nm. The position and intensity of the emission band depends on the stereochemistry of the peptide and polarity of the solvent. Quantum yields ranging from 0.002 to 0.026 have been determined. Disulfide luminescence is quenched by oxygen and enhanced in solutions saturated with nitrogen. Contributions from disulfide linkages should be considered, when analysing the emission spectra of proteins, lacking tryptophan but having a high cystine content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing attention has been focused on methods that deliver pharmacologically active compounds (e.g. drugs, peptides and proteins) in a controlled fashion, so that constant, sustained, site-specific or pulsatile action can be attained. Ion-exchange resins have been widely studied in medical and pharmaceutical applications, including controlled drug delivery, leading to commercialisation of some resin based formulations. Ion-exchangers provide an efficient means to adjust and control drug delivery, as the electrostatic interactions enable precise control of the ion-exchange process and, thus, a more uniform and accurate control of drug release compared to systems that are based only on physical interactions. Unlike the resins, only few studies have been reported on ion-exchange fibers in drug delivery. However, the ion-exchange fibers have many advantageous properties compared to the conventional ion-exchange resins, such as more efficient compound loading into and release from the ion-exchanger, easier incorporation of drug-sized compounds, enhanced control of the ion-exchange process, better mechanical, chemical and thermal stability, and good formulation properties, which make the fibers attractive materials for controlled drug delivery systems. In this study, the factors affecting the nature and strength of the binding/loading of drug-sized model compounds into the ion-exchange fibers was evaluated comprehensively and, moreover, the controllability of subsequent drug release/delivery from the fibers was assessed by modifying the conditions of external solutions. Also the feasibility of ion-exchange fibers for simultaneous delivery of two drugs in combination was studied by dual loading. Donnan theory and theoretical modelling were applied to gain mechanistic understanding on these factors. The experimental results imply that incorporation of model compounds into the ion-exchange fibers was attained mainly as a result of ionic bonding, with additional contribution of non-specific interactions. Increasing the ion-exchange capacity of the fiber or decreasing the valence of loaded compounds increased the molar loading, while more efficient release of the compounds was observed consistently at conditions where the valence or concentration of the extracting counter-ion was increased. Donnan theory was capable of fully interpreting the ion-exchange equilibria and the theoretical modelling supported precisely the experimental observations. The physico-chemical characteristics (lipophilicity, hydrogen bonding ability) of the model compounds and the framework of the fibrous ion-exchanger influenced the affinity of the drugs towards the fibers and may, thus, affect both drug loading and release. It was concluded that precisely controlled drug delivery may be tailored for each compound, in particularly, by choosing a suitable ion-exchange fiber and optimizing the delivery system to take into account the external conditions, also when delivering two drugs simultaneously.