1000 resultados para pattern transfer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3), which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells). Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impaired cholinergic neurotransmission can affect memory formation and influence sleep-wake cycles (SWC). In the present study, we describe the SWC in mice with a deficient vesicular acetylcholine transporter (VAChT) system, previously characterized as presenting reduced acetylcholine release and cognitive and behavioral dysfunctions. Continuous, chronic ECoG and EMG recordings were used to evaluate the SWC pattern during light and dark phases in VAChT knockdown heterozygous (VAChT-KDHET, n=7) and wild-type (WT, n=7) mice. SWC were evaluated for sleep efficiency, total amount and mean duration of slow-wave, intermediate and paradoxical sleep, as well as the number of awakenings from sleep. After recording SWC, contextual fear-conditioning tests were used as an acetylcholine-dependent learning paradigm. The results showed that sleep efficiency in VAChT-KDHET animals was similar to that of WT mice, but that the SWC was more fragmented. Fragmentation was characterized by an increase in the number of awakenings, mainly during intermediate sleep. VAChT-KDHET animals performed poorly in the contextual fear-conditioning paradigm (mean freezing time: 34.4±3.1 and 44.5±3.3 s for WT and VAChT-KDHET animals, respectively), which was followed by a 45% reduction in the number of paradoxical sleep episodes after the training session. Taken together, the results show that reduced cholinergic transmission led to sleep fragmentation and learning impairment. We discuss the results on the basis of cholinergic plasticity and its relevance to sleep homeostasis. We suggest that VAChT-KDHET mice could be a useful model to test cholinergic drugs used to treat sleep dysfunction in neurodegenerative disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alfa Laval Aalborg Oy designs and manufactures waste heat recovery systems utilizing extended surfaces. The waste heat recovery boiler considered in this thesis is a water-tube boiler where exhaust gas is used as the convective heat transfer medium and water or steam flowing inside the tubes is subject to cross-flow. This thesis aims to contribute to the design of waste heat recovery boiler unit by developing a numerical model of the H-type finned tube bundle currently used by Alfa Laval Aalborg Oy to evaluate the gas-side heat transfer performance. The main objective is to identify weaknesses and potential areas of development in the current H-type finned tube design. In addition, numerical simulations for a total of 15 cases with varying geometric parameters are conducted to investigate the heat transfer and pressure drop performance dependent on H-type fin geometry. The investigated geometric parameters include fin width and height, fin spacing, and fin thickness. Comparison between single and double tube type configuration is also conducted. Based on the simulation results, the local heat transfer and flow behaviour of the H-type finned tube is presented including boundary layer development between the fins, the formation of recirculation zone behind the tubes, and the local variations of flow velocity and temperature within the tube bundle and on the fin surface. Moreover, an evaluation of the effects of various fin parameters on heat transfer and pressure drop performance of H-type finned tube bundle has been provided. It was concluded that from the studied parameters fin spacing and fin width had the most significant effect on tube bundle performance and the effect of fin thickness was the least important. Furthermore, the results suggested that the heat transfer performance would increase due to enhanced turbulence if the current double tube configuration is replaced with single tube configuration, but further investigation and experimental measurements are required in order to validate the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical composition of apple juices may be used to discriminate between the varieties for consumption and those for raw material. Fuji and Gala have a chemical pattern that can be used for this classification. Multivariate methods correlate independent continuous chemical descriptors with the categorical apple variety. Three main descriptors of apple juice were selected: malic acid, total reducing sugar and total phenolic compounds. A chemometric approach, employing PCA and SIMCA, was used to classify apple juice samples. PCA was performed with 24 juices from Fuji and Gala, and SIMCA, with 15 juices. The exploratory and predictive models recognized 88% and 64%, respectively, as belonging to a mixed domain. The apple juice from commercial fruits shows a pattern related to cv. Fuji and Gala with boundaries from 0.18 to 0.389 g.100 mL-1 (malic acid), from 8.65 to 15.18 g.100 mL-1 (total reducing sugar) and from 100 to 400 mg.L-1 (total phenolic compounds), but such boundaries were slightly shorter in the remaining set of commercial apple juices, specifically from 0.16 to 0.36 g.100 mL-1, from 9.25 to 15.5 g.100 mL-1 and from 180 to 606 mg.L-1 for acidity, reducing sugar and phenolic compounds, respectively, representing the acid, sweet and bitter tastes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guava is a fruit with high respiration rates and a very short shelf life. Since information on its respiration pattern is contradictory, the objective was to study the changes occurring in the fruit during ripening and to relate them to the respiration behavior of this fruit. Guavas were picked at the half-ripe stage and stored for 8 days at 22 ± 1 ºC and 78 ± 1% relative humidity. The analyses conducted were: peel and pulp coloration, firmness, total soluble solids (TSS), total titratable acidity (TTA), and ethylene production. According to the results, it was verified that the parameters analyzed apparently do not coincide and are ethylene-independent. There was an accentuated ethylene production during ripening, starting from the 4th day. The ethylene synthesis continued increasing up to the 8th day, when the fruits were already decomposing. It was observed that the firmness decreased sharply in the first three days of ripening, and the skin and pulp color changed during ripening. The TSS, total soluble solids, and the TTA, total titratable acidity, practically did not change during the ripening, even with the increased ethylene production. It can be concluded that guava is a fruit that presents characteristics of climacteric and non-climacteric fruits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this Master’s thesis was to study customer knowledge transfer processes in multinational corporations (MNCs). The main objective was to examine how customer knowledge is transferred in MNCs and what kind of factors enhance or inhibit the knowledge transfer process, and to create a framework on the basis of the existing literature and the empirical findings. In this thesis the factors were organized according to whether they are properties of the unit involved in knowledge management, properties of relationships between the units or properties of the knowledge itself. There are various properties that influence knowledge transfer but in this thesis the focus was on examining the relevant findings from the customer knowledge viewpoint. Empirical results show that internal fragmentation in the MNC seems to be inherent in this type of organization, and may cause many problems in customer knowledge transfer and utilization. These knowledge transfer inhibitors rise from the organization’s properties: it’s absorptive capacity, motivation, organizational culture, and the two dimensions of knowledge. However, in spite of the inherent forces causing internal fragmentation and inhibiting knowledge transfer, moderate customer knowledge and expertise codification, cooperative working practices among the experts, and socialization mechanisms posed by the headquarters seem to help maintain customer knowledge transfer, and value creation in the long-term relationship. This value creation can be seen to be based on accessing and integrating a wide variety of knowledge resources in order to create a coherent product and service offering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In oxygenic photosynthesis, the highly oxidizing reactions of water splitting produce reactive oxygen species (ROS) and other radicals that could damage the photosynthetic apparatus and affect cell viability. Under particular environmental conditions, more electrons are produced in water oxidation than can be harmlessly used by photochemical processes for the reduction of metabolic electron sinks. In these circumstances, the excess of electrons can be delivered, for instance, to O2, resulting in the production of ROS. To prevent detrimental reactions, a diversified assortment of photoprotection mechanisms has evolved in oxygenic photosynthetic organisms. In this thesis, I focus on the role of alternative electron transfer routes in photoprotection of the cyanobacterium Synechocystis sp. PCC 6803. Firstly, I discovered a novel subunit of the NDH-1 complex, NdhS, which is necessary for cyclic electron transfer around Photosystem I, and provides tolerance to high light intensities. Cyclic electron transfer is important in modulating the ATP/NADPH ratio under stressful environmental conditions. The NdhS subunit is conserved in many oxygenic phototrophs, such as cyanobacteria and higher plants. NdhS has been shown to link linear electron transfer to cyclic electron transfer by forming a bridge for electrons accumulating in the Ferredoxin pool to reach the NDH-1 complexes. Secondly, I thoroughly investigated the role of the entire flv4-2 operon in the photoprotection of Photosystem II under air level CO2 conditions and varying light intensities. The operon encodes three proteins: two flavodiiron proteins Flv2 and Flv4 and a small Sll0218 protein. Flv2 and Flv4 are involved in a novel electron transport pathway diverting electrons from the QB pocket of Photosystem II to electron acceptors, which still remain unknown. In my work, it is shown that the flv4-2 operon-encoded proteins safeguard Photosystem II activity by sequestering electrons and maintaining the oxidized state of the PQ pool. Further, Flv2/Flv4 was shown to boost Photosystem II activity by accelerating forward electron flow, triggered by an increased redox potential of QB. The Sll0218 protein was shown to be differentially regulated as compared to Flv2 and Flv4. Sll0218 appeared to be essential for Photosystem II accumulation and was assigned a stabilizing role for Photosystem II assembly/repair. It was also shown to be responsible for optimized light-harvesting. Thus, Sll0218 and Flv2/Flv4 cooperate to protect and enhance Photosystem II activity. Sll0218 ensures an increased number of active Photosystem II centers that efficiently capture light energy from antennae, whilst the Flv2/Flv4 heterodimer provides a higher electron sink availability, in turn, promoting a safer and enhanced activity of Photosystem II. This intertwined function was shown to result in lowered singlet oxygen production. The flv4-2 operon-encoded photoprotective mechanism disperses excess excitation pressure in a complimentary manner with the Orange Carotenoid Protein-mediated non-photochemical quenching. Bioinformatics analyses provided evidence for the loss of the flv4-2 operon in the genomes of cyanobacteria that have developed a stress inducible D1 form. However, the occurrence of various mechanisms, which dissipate excitation pressure at the acceptor side of Photosystem II was revealed in evolutionarily distant clades of organisms, i.e. cyanobacteria, algae and plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axial-flux machines tend to have cooling difficulties since it is difficult to arrange continuous heat path between the stator stack and the frame. One important reason for this is that no shrink fitting of the stator is possible in an axial-flux machine. Using of liquid-cooled end shields does not alone solve this issue. Cooling of the rotor and the end windings may also be difficult at least in case of two-stator-single-rotor construction where air circulation in the rotor and in the end-winding areas may be difficult to arrange. If the rotor has significant losses air circulation via the rotor and behind the stator yokes should be arranged which, again, weakens the stator cooling. In this paper we study a novel way of using copper bars as extra heat transfer paths between the stator teeth and liquid cooling pools in the end shields. After this the end windings still suffer of low thermal conductivity and means for improving this by high-heat-conductance material was also studied. The design principle of each cooling system is presented in details. Thermal models based on Computational Fluid Dynamics (CFD) are used to analyse the temperature distribution in the machine. Measurement results are provided from different versions of the machine. The results show that significant improvements in the cooling can be gained by these steps.