988 resultados para particle-laden flow
Resumo:
The pure classical content of a pseudoclassical nonrelativistic model of a spinning particle is studied. The only physical meaningful world line is the one without "Zitterbewegung." Interactions with external electromagnetic fields are also studied.
Resumo:
A pseudoclassical model for a spinning nonrelativistic particle is presented. The model contains two first-class constraints which after quantization give rise to the Levy-Leblond equation for a spin-1/2 particle.
Resumo:
A pseudoclassical model for a relativistic spinning particle is studied. The only physically meaningful world line is the one without Zitterbewegung. The Poincar realization for this situation is constructed.
Resumo:
Gully erosion occurs by the combined action of splash, sheetwash and rill-wash (interrill and rill erosion). These erosion processes have a great capacity for both sediment production and sediment transport. The objectives of this experiment were to evaluate hydrological and sediment transport in a degraded area, severely dissected by gullies; to assess the hydraulic flow characteristics and their aggregate transport capacity; and to measure the initial splash erosion rate. In the study area in Guarapuava, State of Paraná, Brazil (lat 25º 24' S; long 51º24' W; 1034 m asl), the soil was classified as Cambissolo Húmico alumínico, with the following particle-size composition: sand 0.116 kg kg-1; silt 0.180 kg kg-1; and clay 0.704 kg kg-1. The approach of this research was based on microcatchments formed in the ground, to study the hydrological response and sediment transport. A total of eight rill systems were simulated with dry and wet soil. An average rainfall of 33.7 ± 4.0 mm was produced for 35 to 54 min by a rainfall simulator. The equipment was installed, and a trough was placed at the end of the rill to collect sediments and water. During the simulation, the following variables were measured: time to runoff, time to ponding, time of recession, flow velocity, depth, ratio of the initial splash and grain size. The rainsplash of dry topsoil was more than twice as high as under moist conditions (5 g m-2 min-1 and 2 g m-2 min-1, respectively). The characteristics of the flow hydraulics indicate transition from laminar to turbulent flow [Re (Reynolds number) 1000-2000]. In addition, it was observed that a flow velocity of 0.12 m s-1 was the threshold for turbulent flow (Re > 2000), especially at the end of the rainfall simulation. The rill flow tended to be subcritical [Fr (Froude Number) < 1.0]. The variation in hydrological attributes (infiltration and runoff) was lower, while the sediment yield was variable. The erosion in the rill systems was characterized as limited transport, although the degraded area generated an average of 394 g m-2 of sediment in each simulation.
Resumo:
OBJECTIVES: To evaluate the renal function outcome in children with unilateral hydronephrosis and urinary flow impairment at the pelviureteral junction with respect to the therapeutic strategy. METHODS: We retrospectively selected 45 children with iodine-123-hippuran renography performed at diagnosis and after 3 or more years of follow-up. All children had bilateral nonobstructive pattern findings on diuretic renography at follow-up. Eleven children were treated conservatively, and 34 underwent unilateral pyeloplasty. Split and individual renal function, measured by an accumulation index, was computed from background-corrected renograms for the affected and contralateral kidneys at diagnosis and the follow-up examination. RESULTS: Of 11 children treated conservatively, 9 had normal bilateral function at diagnosis, all had reached normal function at follow-up. Of the 34 operated kidneys, 12 (38%) had initially normal function that remained normal at the follow-up examination, and 22 had impaired function that had normalized at the follow-up examination in 15 (68%). The function of the contralateral kidneys was increased in 5 of 8 children with persistently abnormal affected kidneys. Pyeloplasty was performed in 23 children (68%) and 11 children (32%) younger and older than 1 year, respectively. The function of the affected kidneys increased in both groups, but normalization occurred only in the younger children. CONCLUSIONS: Of the children selected for conservative treatment, 82% had normal bilateral renal function at diagnosis that was normal in all at the follow-up examination. Of the children treated surgically, 65% had initially impaired function of the affected kidney that improved in 87% after pyeloplasty. Normalization of function was observed only in children who were younger than 1 year old at surgery. Persistently low function of the affected kidney was compensated for by the contralateral one regardless of the age at surgery.
Resumo:
The rate of carbon dioxide production is commonly used as a measure of microbial activity in the soil. The traditional method of CO2 determination involves trapping CO2 in an alkali solution and then determining CO2 concentration indirectly by titration of the remaining alkali in the solution. This method is still commonly employed in laboratories throughout the world due to its relative simplicity and the fact that it does not require expensive, specific equipment. However, there are several drawbacks: the method is time-consuming, requires large amounts of chemicals and the consistency of results depends on the operator's skills. With this in mind, an improved method was developed to analyze CO2 captured in alkali traps, which is cheap and relatively simple, with a substantially shorter sample handling time and reproducibility equivalent to the traditional titration method. A comparison of the concentration values determined by gas phase flow injection analysis (GPFIA) and titration showed no significant difference (p > 0.05), but GPFIA has the advantage that only a tenth of the sample volume of the titration method is required. The GPFIA system does not require the purchase of new, costly equipment but the device was constructed from items commonly found in laboratories, with suggestions for alternative configurations for other detection units. Furthermore, GPFIA for CO2 analysis can be equally applied to samples obtained from either the headspace of microcosms or from a sampling chamber that allows CO2 to be released from alkali trapping solutions. The optimised GPFIA method was applied to analyse CO2 released from degrading hydrocarbons from a site contaminated by diesel spillage.
Resumo:
Particles moving on crystalline surfaces and driven by external forces or flow fields can acquire velocities along directions that deviate from that of the external force. This effect depends upon the characteristics of the particles, most notably particle size or particle index of refraction, and can therefore be (and has been) used to sort different particles. We introduce a simple model for particles subject to thermal fluctuations and moving in appropriate potential landscapes. Numerical results are compared to recent experiments on landscapes produced with holographic optical tweezers and microfabricated technology. Our approach clarifies the relevance of different parameters, the direction and magnitude of the external force, particle size, and temperature.
Resumo:
The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions of Bogoliubov theory are compared with those of Hartree-Fock theory and of the hydrodynamic model. We show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover from the hydrodynamic regime, holding at low energies, to the independent-particle regime is explicitly explored by studying the frequency of the surface mode as a function of their angular momentum. The applicability of the semiclassical approximation for the excited states is also discussed. We show that the semiclassical approach provides simple and accurate formulas for the density of states and the quantum depletion of the condensate.
Resumo:
The dispersion of the samples in soil particle-size analysis is a fundamental step, which is commonly achieved with a combination of chemical agents and mechanical agitation. The purpose of this study was to evaluate the efficiency of a low-speed reciprocal shaker for the mechanical dispersion of soil samples of different textural classes. The particle size of 61 soil samples was analyzed in four replications, using the pipette method to determine the clay fraction and sieving to determine coarse, fine and total sand fractions. The silt content was obtained by difference. To evaluate the performance, the results of the reciprocal shaker (RSh) were compared with data of the same soil samples available in reports of the Proficiency testing for Soil Analysis Laboratories of the Agronomic Institute of Campinas (Prolab/IAC). The accuracy was analyzed based on the maximum and minimum values defining the confidence intervals for the particle-size fractions of each soil sample. Graphical indicators were also used for data comparison, based on dispersion and linear adjustment. The descriptive statistics indicated predominantly low variability in more than 90 % of the results for sand, medium-textured and clay samples, and for 68 % of the results for heavy clay samples, indicating satisfactory repeatability of measurements with the RSh. Medium variability was frequently associated with silt, followed by the fine sand fraction. The sensitivity analyses indicated an accuracy of 100 % for the three main separates (total sand, silt and clay), in all 52 samples of the textural classes heavy clay, clay and medium. For the nine sand soil samples, the average accuracy was 85.2 %; highest deviations were observed for the silt fraction. In relation to the linear adjustments, the correlation coefficients of 0.93 (silt) or > 0.93 (total sand and clay), as well as the differences between the angular coefficients and the unit < 0.16, indicated a high correlation between the reference data (Prolab/IAC) and results obtained with the RSh. In conclusion, the mechanical dispersion by the reciprocal shaker of soil samples of different textural classes was satisfactory. The results allowed recommending the use of the equipment at low agitation for particle size- analysis. The advantages of this Brazilian apparatus are its low cost, the possibility to simultaneously analyze a great number of samples using ordinary, easily replaceable glass or plastic bottles.
Physical properties and particle-size fractions of soil organic matter in crop-livestock integration
Resumo:
Crop-livestock integration represents an interesting alternative of soil management, especially in regions where the maintenance of cover crops in no-tillage systems is difficult. The objective of this study was to evaluate soil physical and chemical properties, based on the hypothesis that a well-managed crop-livestock integration system improves the soil quality and stabilizes the system. The experiment was set up in a completely randomized design, with five replications. The treatments were arranged in a 6 x 4 factorial design, to assess five crop rotation systems in crop-livestock integration, and native forest as reference of soil undisturbed by agriculture, in four layers (0.0-0.05; 0.05-0.10; 0.10-0.15 and 0.15-0.20 m). The crop rotation systems in crop-livestock integration promoted changes in soil physical and chemical properties and the effects of the different systems were mainly detected in the surface layer. The crops in integrated crop-livestock systems allowed the maintenance of soil carbon at levels equal to those of the native forest, proving the efficiency of these systems in terms of soil conservation. The systems influenced the environmental stability positively; the soil quality indicator mineral-associated organic matter was best related to aggregate stability.
Resumo:
Leaching of nitrate (NO3-) can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC), whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm) of 24 representative soils of São Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i) low values of remaining phosphorus (Prem), (ii) low soil pH values measured in water (pH H2O), and (iii) high pH values measured in 1 moL L-1 KCl (pH KCl), the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition.
Resumo:
Substantial collective flow is observed in collisions between lead nuclei at Large Hadron Collider (LHC) as evidenced by the azimuthal correlations in the transverse momentum distributions of the produced particles. Our calculations indicate that the global v1-flow, which at RHIC peaked at negative rapidities (named third flow component or antiflow), now at LHC is going to turn toward forward rapidities (to the same side and direction as the projectile residue). Potentially this can provide a sensitive barometer to estimate the pressure and transport properties of the quark-gluon plasma. Our calculations also take into account the initial state center-of-mass rapidity fluctuations, and demonstrate that these are crucial for v1 simulations. In order to better study the transverse momentum flow dependence we suggest a new "symmetrized" v1S(pt) function, and we also propose a new method to disentangle global v1 flow from the contribution generated by the random fluctuations in the initial state. This will enhance the possibilities of studying the collective Global v1 flow both at the STAR Beam Energy Scan program and at LHC.