989 resultados para particle physics - cosmology connection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using six kinds of lattice types (4×4 ,5×5 , and6×6 square lattices;3×3×3 cubic lattice; and2+3+4+3+2 and4+5+6+5+4 triangular lattices), three different size alphabets (HP ,HNUP , and 20 letters), and two energy functions, the designability of proteinstructures is calculated based on random samplings of structures and common biased sampling (CBS) of proteinsequence space. Then three quantities stability (average energy gap),foldability, and partnum of the structure, which are defined to elucidate the designability, are calculated. The authors find that whatever the type of lattice, alphabet size, and energy function used, there will be an emergence of highly designable (preferred) structure. For all cases considered, the local interactions reduce degeneracy and make the designability higher. The designability is sensitive to the lattice type, alphabet size, energy function, and sampling method of the sequence space. Compared with the random sampling method, both the CBS and the Metropolis Monte Carlo sampling methods make the designability higher. The correlation coefficients between the designability, stability, and foldability are mostly larger than 0.5, which demonstrate that they have strong correlation relationship. But the correlation relationship between the designability and the partnum is not so strong because the partnum is independent of the energy. The results are useful in practical use of the designability principle, such as to predict the proteintertiary structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A basic understanding of the relationships between rainfall intensity, duration of rainfall and the amount of suspended particles in stormwater runoff generated from road surfaces has been gained mainly from past washoff experiments using rainfall simulators. Simulated rainfall was generally applied at constant intensities, whereas rainfall temporal patterns during actual storms are typically highly variable. This paper discusses a rationale for the application of the constant-intensity washoff concepts to actual storm event runoff. The rationale is tested using suspended particle load data collected at a road site located in Toowoomba, Australia. Agreement between the washoff concepts and measured data is most consistent for intermediate-duration storms (duration <5 h and >1 h). Particle loads resulting from these storm events increase linearly with average rainfall intensity. Above a threshold intensity, there is evidence to suggest a constant or plateau particle load is reached. The inclusion of a peak discharge factor (maximum 6 min rainfall intensity) enhances the ability to predict particle loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol.2, 117–E (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ- DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single particle analysis (SPA) coupled with high-resolution electron cryo-microscopy is emerging as a powerful technique for the structure determination of membrane protein complexes and soluble macromolecular assemblies. Current estimates suggest that ∼104–105 particle projections are required to attain a 3 Å resolution 3D reconstruction (symmetry dependent). Selecting this number of molecular projections differing in size, shape and symmetry is a rate-limiting step for the automation of 3D image reconstruction. Here, we present SwarmPS, a feature rich GUI based software package to manage large scale, semi-automated particle picking projects. The software provides cross-correlation and edge-detection algorithms. Algorithm-specific parameters are transparently and automatically determined through user interaction with the image, rather than by trial and error. Other features include multiple image handling (∼102), local and global particle selection options, interactive image freezing, automatic particle centering, and full manual override to correct false positives and negatives. SwarmPS is user friendly, flexible, extensible, fast, and capable of exporting boxed out projection images, or particle coordinates, compatible with downstream image processing suites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers are reported. The thin graphene-like nano-sheets were produced via the reduction of graphite oxide which was deposited on SAW interdigitated transducers (IDTs). Their sensing performance was assessed towards hydrogen (H2) and carbon monoxide (CO) in a synthetic air carrier gas at room temperature (25 °C) and 40 °C. Raman and X-ray photoelectron spectroscopy (XPS) revealed that the deposited graphite oxide (GO) was not completely reduced creating small, graphitic nanocrystals ∼2.7 nm in size. © 2008 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway timetabling is an important process in train service provision as it matches the transportation demand with the infrastructure capacity while customer satisfaction is also considered. It is a multi-objective optimisation problem, in which a feasible solution, rather than the optimal one, is usually taken in practice because of the time constraint. The quality of services may suffer as a result. In a railway open market, timetabling usually involves rounds of negotiations among a number of self-interested and independent stakeholders and hence additional objectives and constraints are imposed on the timetabling problem. While the requirements of all stakeholders are taken into consideration simultaneously, the computation demand is inevitably immense. Intelligent solution-searching techniques provide a possible solution. This paper attempts to employ a particle swarm optimisation (PSO) approach to devise a railway timetable in an open market. The suitability and performance of PSO are studied on a multi-agent-based railway open-market negotiation simulation platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientific visualisations such as computer-based animations and simulations are increasingly a feature of high school science instruction. Visualisations are adopted enthusiastically by teachers and embraced by students, and there is good evidence that they are popular and well received. There is limited evidence, however, of how effective they are in enabling students to learn key scientific concepts. This paper reports the results of a quantitative study conducted in Australian physics and chemistry classrooms. In general there was no statistically significant difference between teaching with and without visualisations, however there were intriguing differences around student sex and academic ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enormous amounts of money and energy are being devoted to the development, use and organisation of computer-based scientific visualisations (e.g. animations and simulations) in science education. It seems plausible that visualisations that enable students to gain visual access to scientific phenomena that are too large, too small or occur too quickly or too slowly to be seen by the naked eye, or to scientific concepts and models, would yield enhanced conceptual learning. When the literature is searched, however, it quickly becomes apparent that there is a dearth of quantitative evidence for the effectiveness of scientific visualisations in enhancing students’ learning of science concepts. This paper outlines an Australian project that is using innovative research methodology to gather evidence on this question in physics and chemistry classrooms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of the placement and rating of transformers and feeders are the main objective of the basic distribution network planning. The bus voltage and the feeder current are two constraints which should be maintained within their standard range. The distribution network planning is hardened when the planning area is located far from the sources of power generation and the infrastructure. This is mainly as a consequence of the voltage drop, line loss and system reliability. Long distance to supply loads causes a significant amount of voltage drop across the distribution lines. Capacitors and Voltage Regulators (VRs) can be installed to decrease the voltage drop. This long distance also increases the probability of occurrence of a failure. This high probability leads the network reliability to be low. Cross-Connections (CC) and Distributed Generators (DGs) are devices which can be employed for improving system reliability. Another main factor which should be considered in planning of distribution networks (in both rural and urban areas) is load growth. For supporting this factor, transformers and feeders are conventionally upgraded which applies a large cost. Installation of DGs and capacitors in a distribution network can alleviate this issue while the other benefits are gained. In this research, a comprehensive planning is presented for the distribution networks. Since the distribution network is composed of low and medium voltage networks, both are included in this procedure. However, the main focus of this research is on the medium voltage network planning. The main objective is to minimize the investment cost, the line loss, and the reliability indices for a study timeframe and to support load growth. The investment cost is related to the distribution network elements such as the transformers, feeders, capacitors, VRs, CCs, and DGs. The voltage drop and the feeder current as the constraints are maintained within their standard range. In addition to minimizing the reliability and line loss costs, the planned network should support a continual growth of loads, which is an essential concern in planning distribution networks. In this thesis, a novel segmentation-based strategy is proposed for including this factor. Using this strategy, the computation time is significantly reduced compared with the exhaustive search method as the accuracy is still acceptable. In addition to being applicable for considering the load growth, this strategy is appropriate for inclusion of practical load characteristic (dynamic), as demonstrated in this thesis. The allocation and sizing problem has a discrete nature with several local minima. This highlights the importance of selecting a proper optimization method. Modified discrete particle swarm optimization as a heuristic method is introduced in this research to solve this complex planning problem. Discrete nonlinear programming and genetic algorithm as an analytical and a heuristic method respectively are also applied to this problem to evaluate the proposed optimization method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water uptake refers to the ability of atmospheric particles to take up water vapour from the surrounding atmosphere. This is an important property that affects particle size and phase and therefore influences many characteristics of aerosols relevant to air quality and climate. However, the water uptake properties of many important atmospheric aerosol systems, including those related to the oceans, are still not fully understood. Therefore, the primary aim of this PhD research program was to investigate the water uptake properties of marine aerosols. In particular, the effect of organics on marine aerosol water uptake was investigated. Field campaigns were conducted at remote coastal sites on the east coast of Australia (Agnes Water; March-April 2007) and west coast of Ireland (Mace Head; June 2007), and laboratory measurements were performed on bubble-generated sea spray aerosols. A combined Volatility-Hygroscopicity-Tandem Differential Mobility Analyser (VH-TDMA) was employed in all experiments. This system probes the changes in the hygroscopic properties of nanoparticles as volatile organic components are progressively evaporated. It also allows particle composition to be inferred from combined volatility-hygroscopicity measurements. Frequent new particle formation and growth events were observed during the Agnes Water campaign. The VH-TDMA was used to investigate freshly nucleated particles (17-22.5 nm) and it was found that the condensation of sulphate and/or organic vapours was responsible for driving particle growth during the events. Aitken mode particles (~40 nm) were also measured with the VH-TDMA. In 3 out of 18 VH-TDMA scans evaporation of a volatile, organic component caused a very large increase in hygroscopicity that could only be explained by an increase in the absolute water uptake of the particle residuals, and not merely an increase in their relative hygroscopicity. This indicated the presence of organic components that were suppressing the hygroscopic growth of mixed particles on the timescale of humidification in the VH-TDMA (6.5 secs). It was suggested that the suppression of water uptake was caused by either a reduced rate of hygroscopic growth due to the presence of organic films, or organic-inorganic interactions in solution droplets that had a negative effect on hygroscopicity. Mixed organic-inorganic particles were rarely observed by the VH-TDMA during the summer campaign conducted at Mace Head. The majority of particles below 100 nm in clean, marine air appeared to be sulphates neutralised to varying degrees by ammonia. On one unique day, 26 June 2007, particularly large concentrations of sulphate aerosol were observed and identified as volcanic emissions from Iceland. The degree of neutralisation of the sulphate aerosol by ammonia was calculated by the VH-TDMA and found to compare well with the same quantity measured by an aerosol mass spectrometer. This was an important verification of the VH-TMDA‘s ability to identify ammoniated sulphate aerosols based on the simultaneous measurement of aerosol volatility and hygroscopicity. A series of measurements were also conducted on sea spray aerosols generated from Moreton Bay seawater samples in a laboratory-based bubble chamber. Accumulation mode sea spray particles (38-173 nm) were found to contain only a minor organic fraction (< 10%) that had little effect on particle hygroscopicity. These results are important because previous studies have observed that accumulation mode sea spray particles are predominantly organic (~80% organic mass fraction). The work presented here suggests that this is not always the case, and that there may be currently unknown factors that are controlling the transfer of organics to the aerosol phase during the bubble bursting process. Taken together, the results of this research program have significantly improved our understanding of organic-containing marine aerosols and the way they interact with water vapour in the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site-specific performance provides choices in audience experience via degrees of scale, proximity, levels of immersion and viewing perspectives. Beyond these choices, multi-site promenade events also form a connected audience/performer relationship in which moving together in time and space can produce a shared narrative and aesthetic sensibility of collective, yet individuated and shifting meanings. This paper interrogates this notion through audience/performer experiences in two separate multi-site, dance-led events. here/there/then/now occurred in four intimate sites within the Brisbane Powerhouse, providing a theatricalised platform for audiences to create linked narratives through open-ended and fragmented intertextuality. Accented Body, based on the concept of “the body as site and in site” and notions of connectivity, provided a more expansive platform for a similar, but heightened, shared engagement. Audiences traversed 6 outdoor and 2 indoor Brisbane sites moving to varying levels of a large complex. Eleven, predominantly interactive, screens provided links to other sites as well as to distributed presences in Seoul and London. The differentiation in scale and travel time between sites deepened the immersive experiences of audiences who reported transformative engagements with both site and architecture, accompanied by a sense of extended and yet quickened time.