875 resultados para parametric bootstrap
Resumo:
Natural mortality of marine invertebrates is often very high in the early life history stages and decreases in later stages. The possible size-dependent mortality of juvenile banana prawns, P. merguiensis (2-15 mm carapace length) in the Gulf of Carpentaria was investigated. The analysis was based on the data collected at 2-weekly intervals by beam trawls at four sites over a period of six years (between September 1986 and March 1992). It was assumed that mortality was a parametric function of size, rather than a constant. Another complication in estimating mortality for juvenile banana prawns is that a significant proportion of the population emigrates from the study area each year. This effect was accounted for by incorporating the size-frequency pattern of the emigrants in the analysis. Both the extra parameter in the model required to describe the size dependence of mortality, and that used to account for emigration were found to be significantly different from zero, and the instantaneous mortality rate declined from 0.89 week(-1) for 2 mm prawns to 0.02 week(-1) for 15 mm prawns.
Resumo:
The purpose of a phase I trial in cancer is to determine the level (dose) of the treatment under study that has an acceptable level of adverse effects. Although substantial progress has recently been made in this area using parametric approaches, the method that is widely used is based on treating small cohorts of patients at escalating doses until the frequency of toxicities seen at a dose exceeds a predefined tolerable toxicity rate. This method is popular because of its simplicity and freedom from parametric assumptions. In this payer, we consider cases in which it is undesirable to assume a parametric dose-toxicity relationship. We propose a simple model-free approach by modifying the method that is in common use. The approach assumes toxicity is nondecreasing with dose and fits an isotonic regression to accumulated data. At any point in a trial, the dose given is that with estimated toxicity deemed closest to the maximum tolerable toxicity. Simulations indicate that this approach performs substantially better than the commonly used method and it compares favorably with other phase I designs.
Resumo:
Joints are primary sources of weakness in structures. Pin joints are very common and are used where periodic disassembly of components is needed. A circular pin in a circular hole in an infinitely large plate is an abstraction of such a pin joint. A two-dimensional plane-stress analysis of such a configuration is carried out, here, subjected to pin-bearing and/or biaxial-plate loading. The pin is assumed to be rigid compared to the plate material. For pin load the reactive stresses at the edges of the infinite plate tend to zero though their integral over the external boundary equals to the pin load. The pin-hole interface is unbonded and so beyond some load levels the plate separates from the pin and the extent of separation is a non-linear function of load level. The problem is solved by inverse technique where the extent of contact is specified and the causative loads are evaluated directly. In the situations where combined load is acting the separation-contact zone specification generally needs two parameters (angles) to be specified. The present report deals with analysing such a situation in metallic (or isotropic) plates. Numerical results are provided for parametric representation and the methodology is demonstrated.
Resumo:
Non-parametric difference tests such as triangle and duo-trio tests traditionally are used to establish differences or similarities between products. However they only supply the researcher with partial answers and often further testing is required to establish the nature, size and direction of differences. This paper looks at the advantages of the difference from control (DFC) test (also known as degree of difference test) and discusses appropriate applications of the test. The scope and principle of the test, panel composition and analysis of results are presented with the aid of suitable examples. Two of the major uses of the DFC test are in quality control and shelf-life testing. The role DFC takes in these areas and the use of other tests to complement the testing is discussed. Controls or standards are important in both these areas and the use of standard products, mental and written standards and blind controls are highlighted. The DFC test has applications in products where the duo-trio and triangle tests cannot be used because of the normal heterogeneity of the product. While the DFC test is a simple difference test it can be structured to give the researcher more valuable data and scope to make informed decisions about their product.
Resumo:
Recovering the motion of a non-rigid body from a set of monocular images permits the analysis of dynamic scenes in uncontrolled environments. However, the extension of factorisation algorithms for rigid structure from motion to the low-rank non-rigid case has proved challenging. This stems from the comparatively hard problem of finding a linear “corrective transform” which recovers the projection and structure matrices from an ambiguous factorisation. We elucidate that this greater difficulty is due to the need to find multiple solutions to a non-trivial problem, casting a number of previous approaches as alleviating this issue by either a) introducing constraints on the basis, making the problems nonidentical, or b) incorporating heuristics to encourage a diverse set of solutions, making the problems inter-dependent. While it has previously been recognised that finding a single solution to this problem is sufficient to estimate cameras, we show that it is possible to bootstrap this partial solution to find the complete transform in closed-form. However, we acknowledge that our method minimises an algebraic error and is thus inherently sensitive to deviation from the low-rank model. We compare our closed-form solution for non-rigid structure with known cameras to the closed-form solution of Dai et al. [1], which we find to produce only coplanar reconstructions. We therefore make the recommendation that 3D reconstruction error always be measured relative to a trivial reconstruction such as a planar one.
Resumo:
Underground tunnels are vulnerable to terrorist attacks which can cause collapse of the tunnel structures or at least extensive damage, requiring lengthy repairs. This paper treats the blast impact on a reinforced concrete segmental tunnel buried in soil under a number of parametric conditions; soil properties, soil cover, distance of explosive from the tunnel centreline and explosive weight and analyses the possible failure patterns. A fully coupled Fluid Structure Interaction (FSI) technique incorporating the Arbitrary Lagrangian-Eulerian (ALE) method is used in this study. Results indicate that the tunnel in saturated soil is more vulnerable to severe damage than that buried in either partially saturated soil or dry soil. The tunnel is also more vulnerable to surface explosions which occur directly above the centre of the tunnel than those that occur at any equivalent distances in the ground away from the tunnel centre. The research findings provide useful information on modeling, analysis, overall tunnel response and failure patterns of segmented tunnels subjected to blast loads. This information will guide future development and application of research in this field.
Resumo:
Botryosphaeria rhodina (anamorph Lasiodiplodia theobromae) is a common endophyte and opportunistic pathogen on more than 500 tree species in the tropics and subtropics. During routine disease surveys of plantations in Australia and Venezuela several isolates differing from L. theobromae were identified and subsequently characterized based upon morphology and ITS and EF1-a nucleotide sequences. These isolates grouped into three strongly supported clades related to but different from the known taxa, B. rhodina and L. gonubiensis, These have been described here as three new species L. venezuelensis sp. nov., L. crassispora sp. nov. and L. rubropurpurea sp. nov. The three could be distinguished easily from each other and the two described species of Lasiodiplodia, thus confirming phylogenetic separations. Furthermore all five Lasiodiplodia spp. now recognized separated from Diplodia spp. and Dothiorella spp. with 100% bootstrap support.
Resumo:
A semi-similar solution of an unsteady laminar compressible three-dimensional stagnation point boundary layer flow with massive blowing has been obtained when the free stream velocity varies arbitrarily with time. The resulting partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme with a quasi-linearization technique in the nodal point region and an implicit finite-difference scheme with a parametric differentiation technique in the saddle point region. The results have been obtained for two particular unsteady free stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. Results show that the skin-friction and heat-transfer parameters respond significantly to the time dependent arbitrary free stream velocity. Velocity and enthalpy profiles approach their free stream values faster as time increases. There is a reverse flow in the y-wise velocity profile, and overshoot in the x-wise velocity and enthalpy profiles in the saddle point region, which increase as injection and wall temperature increase. Location of the dividing streamline increases as injection increases, but as the wall temperature and time increase, it decreases.
Resumo:
Transmission loss of a rectangular expansion chamber, the inlet and outlet of which are situated at arbitrary locations of the chamber, i.e., the side wall or the face of the chamber, are analyzed here based on the Green's function of a rectangular cavity with homogeneous boundary conditions. The rectangular chamber Green's function is expressed in terms of a finite number of rigid rectangular cavity mode shapes. The inlet and outlet ports are modeled as uniform velocity pistons. If the size of the piston is small compared to wavelength, then the plane wave excitation is a valid assumption. The velocity potential inside the chamber is expressed by superimposing the velocity potentials of two different configurations. The first configuration is a piston source at the inlet port and a rigid termination at the outlet, and the second one is a piston at the outlet with a rigid termination at the inlet. Pressure inside the chamber is derived from velocity potentials using linear momentum equation. The average pressure acting on the pistons at the inlet and outlet locations is estimated by integrating the acoustic pressure over the piston area in the two constituent configurations. The transfer matrix is derived from the average pressure values and thence the transmission loss is calculated. The results are verified against those in the literature where use has been made of modal expansions and also numerical models (FEM fluid). The transfer matrix formulation for yielding wall rectangular chambers has been derived incorporating the structural–acoustic coupling. Parametric studies are conducted for different inlet and outlet configurations, and the various phenomena occurring in the TL curves that cannot be explained by the classical plane wave theory, are discussed.
Resumo:
In this paper, we present an approach to estimate fractal complexity of discrete time signal waveforms based on computation of area bounded by sample points of the signal at different time resolutions. The slope of best straight line fit to the graph of log(A(rk)A / rk(2)) versus log(l/rk) is estimated, where A(rk) is the area computed at different time resolutions and rk time resolutions at which the area have been computed. The slope quantifies complexity of the signal and it is taken as an estimate of the fractal dimension (FD). The proposed approach is used to estimate the fractal dimension of parametric fractal signals with known fractal dimensions and the method has given accurate results. The estimation accuracy of the method is compared with that of Higuchi's and Sevcik's methods. The proposed method has given more accurate results when compared with that of Sevcik's method and the results are comparable to that of the Higuchi's method. The practical application of the complexity measure in detecting change in complexity of signals is discussed using real sleep electroencephalogram recordings from eight different subjects. The FD-based approach has shown good performance in discriminating different stages of sleep.
Resumo:
The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.
Resumo:
Conjugate natural convection in a vertical annulus with a centrally located vertical heat generating rod is studied numerically. The governing equations are discretized on a staggered mesh and are solved using a pressure-correction algorithm. A parametric study is performed by varying the Grashof number, aspect ratio, and the solid-to-fluid thermal conductivity ratio over wide ranges with the Prandtl number fixed at 0.7. Results are presented for the variation of several quantities of interest such as the local Nusselt numbers on the inner and outer boundaries, the axial variation of the centerline and interface temperatures, maximum solid, average solid and average interface temperature variations with Grashof number, and the average Nusselt number variation for the inner and outer boundaries with Grashof number. The average Nusselt number from the conjugate analysis is found to be between the Nusselt numbers of the isothermal and the isoflux cases. The average Nusselt numbers on the inner and outer boundaries show an increasing trend with the Grashof number. Correlations are presented for the Nusselt number and the dimensionless temperatures of interest in terms of the parameters of the problem.
Resumo:
In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.
Resumo:
A fuzzy logic system (FLS) with a new sliding window defuzzifier is proposed for structural damage detection using modal curvatures. Changes in the modal curvatures due to damage are fuzzified using Gaussian fuzzy sets and mapped to damage location and size using the FLS. The first four modal vectors obtained from finite element simulations of a cantilever beam are used for identifying the location and size of damage. Parametric studies show that modal curvatures can be used to accurately locate the damage; however, quantifying the size of damage is difficult. Tests with noisy simulated data show that the method detects damage very accurately at different noise levels and when some modal data are missing.
Resumo:
The contact zone and pressure distribution between two elastic plates joined by an elastic bolt and nut are estimated using finite element analysis. Smooth interfacial conditions are assumed in all the regions of contact. Eight node axisymmetric ring elements are used to model the structure. The matrix solution is obtained through frontal technique and this solution technique is shown to be very efficient for the iterative scheme adopted to determine the extent of contact. A parametric study is conducted varying the elastic properties of bolt and plate materials, bolt head diameter and thickness of the plates. The method of approach presented in this paper provides a solution with a realistic idealization of tension flange joints.