928 resultados para parameter
Resumo:
A review of the main rolling models is conducted to assess their suitability for modelling the foil rolling process. Two such models are Fleck and Johnson's Hertzian model and Fleck, Johnson, Mear and Zhang's Influence Function model. Both of these models are approximated through the use of perturbation methods. Decrease in the computation time resulted when compared with the numerical solution. The Hertzian model was approximated using the ratio of the yield stress of the strip to the plane-strain Young's Modulus of the rolls as the small perturbation parameter. The Influence Function model approximation takes advantage of the solution of the well-known Aerofoil Integral Equation to gain an insight into how the choice of interior boundary points affects the stability of numerical solution of the model's equations. These approximations require less computation than their full models and, in the case of the Hertzian approximation, only introduces a small error in the predictions of roll force roll torque. Hence the Hertzian approximate method is suitable for on-line control. The predictions from the Influence Function approximation underestimates the predictions from the numerical results. Better approximation of the pressure in the plastic reduction regions is the main source of this error.
Resumo:
This dissertation is primarily an applied statistical modelling investigation, motivated by a case study comprising real data and real questions. Theoretical questions on modelling and computation of normalization constants arose from pursuit of these data analytic questions. The essence of the thesis can be described as follows. Consider binary data observed on a two-dimensional lattice. A common problem with such data is the ambiguity of zeroes recorded. These may represent zero response given some threshold (presence) or that the threshold has not been triggered (absence). Suppose that the researcher wishes to estimate the effects of covariates on the binary responses, whilst taking into account underlying spatial variation, which is itself of some interest. This situation arises in many contexts and the dingo, cypress and toad case studies described in the motivation chapter are examples of this. Two main approaches to modelling and inference are investigated in this thesis. The first is frequentist and based on generalized linear models, with spatial variation modelled by using a block structure or by smoothing the residuals spatially. The EM algorithm can be used to obtain point estimates, coupled with bootstrapping or asymptotic MLE estimates for standard errors. The second approach is Bayesian and based on a three- or four-tier hierarchical model, comprising a logistic regression with covariates for the data layer, a binary Markov Random field (MRF) for the underlying spatial process, and suitable priors for parameters in these main models. The three-parameter autologistic model is a particular MRF of interest. Markov chain Monte Carlo (MCMC) methods comprising hybrid Metropolis/Gibbs samplers is suitable for computation in this situation. Model performance can be gauged by MCMC diagnostics. Model choice can be assessed by incorporating another tier in the modelling hierarchy. This requires evaluation of a normalization constant, a notoriously difficult problem. Difficulty with estimating the normalization constant for the MRF can be overcome by using a path integral approach, although this is a highly computationally intensive method. Different methods of estimating ratios of normalization constants (N Cs) are investigated, including importance sampling Monte Carlo (ISMC), dependent Monte Carlo based on MCMC simulations (MCMC), and reverse logistic regression (RLR). I develop an idea present though not fully developed in the literature, and propose the Integrated mean canonical statistic (IMCS) method for estimating log NC ratios for binary MRFs. The IMCS method falls within the framework of the newly identified path sampling methods of Gelman & Meng (1998) and outperforms ISMC, MCMC and RLR. It also does not rely on simplifying assumptions, such as ignoring spatio-temporal dependence in the process. A thorough investigation is made of the application of IMCS to the three-parameter Autologistic model. This work introduces background computations required for the full implementation of the four-tier model in Chapter 7. Two different extensions of the three-tier model to a four-tier version are investigated. The first extension incorporates temporal dependence in the underlying spatio-temporal process. The second extensions allows the successes and failures in the data layer to depend on time. The MCMC computational method is extended to incorporate the extra layer. A major contribution of the thesis is the development of a fully Bayesian approach to inference for these hierarchical models for the first time. Note: The author of this thesis has agreed to make it open access but invites people downloading the thesis to send her an email via the 'Contact Author' function.
Resumo:
Assessment of the condition of connectors in the overhead electricity network has traditionally relied on the heat dissipation or voltage drop from existing load current (50Hz) as a measurable parameter to differentiate between satisfactory and failing connectors. This research has developed a technique which does not rely on the 50Hz current and a prototype connector tester has been developed. In this system a high frequency signal is injected into the section of line under test and measures the resistive voltage drop and the current at the test frequency to yield the resistance in micro-ohms. From the value of resistance a decision as to whether a connector is satisfactory or approaching failure can be made. Determining the resistive voltage drop in the presence of a large induced voltage was achieved by the innovative approach of using a representative sample of the magnetic flux producing the induced voltage as the phase angle reference for the signal processing rather than the phase angle of the current, which can be affected by the presence of nearby metal objects. Laboratory evaluation of the connector tester has validated the measurement technique. The magnitude of the load current (50Hz) has minimal effect on the measurement accuracy. Addition of a suitable battery based power supply system and isolated communications, probably radio and refinement of the printed circuit board design and software are the remaining development steps to a production instrument.
Resumo:
Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-kappaB, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-kappaB in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1beta activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-kappaB signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of IkappaBalpha, the binding partner of NF-kappaB. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-kappaB luciferase construct, using both SB 203580 and dominant-negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription-polymerase chain reaction (RT-PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8-luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant-negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-kappaB
Resumo:
One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.
Resumo:
In Australia and many other countries worldwide, water used in the manufacture of concrete must be potable. At present, it is currently thought that concrete properties are highly influenced by the water type used and its proportion in the concrete mix, but actually there is little knowledge of the effects of different, alternative water sources used in concrete mix design. Therefore, the identification of the level and nature of contamination in available water sources and their subsequent influence on concrete properties is becoming increasingly important. Of most interest, is the recycled washout water currently used by batch plants as mixing water for concrete. Recycled washout water is the water used onsite for a variety of purposes, including washing of truck agitator bowls, wetting down of aggregate and run off. This report presents current information on the quality of concrete mixing water in terms of mandatory limits and guidelines on impurities as well as investigating the impact of recycled washout water on concrete performance. It also explores new sources of recycled water in terms of their quality and suitability for use in concrete production. The complete recycling of washout water has been considered for use in concrete mixing plants because of the great benefit in terms of reducing the cost of waste disposal cost and environmental conservation. The objective of this study was to investigate the effects of using washout water on the properties of fresh and hardened concrete. This was carried out by utilizing a 10 week sampling program from three representative sites across South East Queensland. The sample sites chosen represented a cross-section of plant recycling methods, from most effective to least effective. The washout water samples collected from each site were then analysed in accordance with Standards Association of Australia AS/NZS 5667.1 :1998. These tests revealed that, compared with tap water, the washout water was higher in alkalinity, pH, and total dissolved solids content. However, washout water with a total dissolved solids content of less than 6% could be used in the production of concrete with acceptable strength and durability. These results were then interpreted using chemometric techniques of Principal Component Analysis, SIMCA and the Multi-Criteria Decision Making methods PROMETHEE and GAIA were used to rank the samples from cleanest to unclean. It was found that even the simplest purifying processes provided water suitable for the manufacture of concrete form wash out water. These results were compared to a series of alternative water sources. The water sources included treated effluent, sea water and dam water and were subject to the same testing parameters as the reference set. Analysis of these results also found that despite having higher levels of both organic and inorganic properties, the waters complied with the parameter thresholds given in the American Standard Test Method (ASTM) C913-08. All of the alternative sources were found to be suitable sources of water for the manufacture of plain concrete.
Resumo:
This paper suggests an approach for finding an appropriate combination of various parameters for extracting texture features (e.g. choice of spectral band for extracting texture feature, size of the moving window, quantization level of the image, and choice of texture feature etc.) to be used in the classification process. Gray level co-occurrence matrix (GLCM) method has been used for extracting texture from remotely sensed satellite image. Results of the classification of an Indian urban environment using spatial property (texture), derived from spectral and multi-resolution wavelet decomposed images have also been reported. A multivariate data analysis technique called ‘conjoint analysis’ has been used in the study to analyze the relative importance of these parameters. Results indicate that the choice of texture feature and window size have higher relative importance in the classification process than quantization level or the choice of image band for extracting texture feature. In case of texture features derived using wavelet decomposed image, the parameter ‘decomposition level’ has almost equal relative importance as the size of moving window and the decomposition of images up to level one is sufficient and there is no need to go for further decomposition. It was also observed that the classification incorporating texture features improves the overall classification accuracy in a statistically significant manner in comparison to pure spectral classification.
Resumo:
This paper proposes the use of artificial neural networks (ANNs) to identify and control an induction machine. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics; and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Various advantages of these control schemes over other conventional schemes are cited and the performance of the combined speed and current control scheme is compared with that of the standard vector control scheme
Resumo:
This paper presents bonding technology of aluminum alloy by hot-dipping tin. The dissolution curve of copper in molten tin liquid was obtained in the experiment of hot-dipping Sn. Optimal hot-dipping parameter which was suitable for soldering was designed. To elucidate characteristics of interfacial evolution, the microstructure of the coatings, soldered joint were analyzed using optical microscopy, SEM and EDX. The shear strength of soldered joints was tested as high as 39.9Mpa, which is high enough to achieve the requirement of electronic industry.
Resumo:
A novel Zr-based bulk metallic glass composite was fabricated using stainless steel capillaries as the reinforcement. Large plasticity (14%) was achieved in the composite with a reinforcement volume fraction of 38%. The high plasticity observed can be attributed to the formation of small glass fibers encapsulated by the steel capillaries, which promotes multiple shear bands in both metallic glass matrix and the fibers themselves. A new parameter was also proposed to approximately evaluate the reinforcement efficiency.
Resumo:
This research discusses some of the issues encountered while developing a set of WGEN parameters for Chile and advice for others interested in developing WGEN parameters for arid climates. The WGEN program is a commonly used and a valuable research tool; however, it has specific limitations in arid climates that need careful consideration. These limitations are analysed in the context of generating a set of WGEN parameters for Chile. Fourteen to 26 years of precipitation data are used to calculate precipitation parameters for 18 locations in Chile, and 3–8 years of temperature and solar radiation data are analysed to generate parameters for seven of these locations. Results indicate that weather generation parameters in arid regions are sensitive to erroneous or missing precipitation data. Research shows that the WGEN-estimated gamma distribution shape parameter (α) for daily precipitation in arid zones will tend to cluster around discrete values of 0 or 1, masking the high sensitivity of these parameters to additional data. Rather than focus on the length in years when assessing the adequacy of a data record for estimation of precipitation parameters, researchers should focus on the number of wet days in dry months in a data set. Analysis of the WGEN routines for the estimation of temperature and solar radiation parameters indicates that errors can occur when individual ‘months’ have fewer than two wet days in the data set. Recommendations are provided to improve methods for estimation of WGEN parameters in arid climates.
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.
Resumo:
Statisticians along with other scientists have made significant computational advances that enable the estimation of formerly complex statistical models. The Bayesian inference framework combined with Markov chain Monte Carlo estimation methods such as the Gibbs sampler enable the estimation of discrete choice models such as the multinomial logit (MNL) model. MNL models are frequently applied in transportation research to model choice outcomes such as mode, destination, or route choices or to model categorical outcomes such as crash outcomes. Recent developments allow for the modification of the potentially limiting assumptions of MNL such as the independence from irrelevant alternatives (IIA) property. However, relatively little transportation-related research has focused on Bayesian MNL models, the tractability of which is of great value to researchers and practitioners alike. This paper addresses MNL model specification issues in the Bayesian framework, such as the value of including prior information on parameters, allowing for nonlinear covariate effects, and extensions to random parameter models, so changing the usual limiting IIA assumption. This paper also provides an example that demonstrates, using route-choice data, the considerable potential of the Bayesian MNL approach with many transportation applications. This paper then concludes with a discussion of the pros and cons of this Bayesian approach and identifies when its application is worthwhile