890 resultados para paper-based DGT
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.
Resumo:
Learning and then recognizing a route, whether travelled during the day or at night, in clear or inclement weather, and in summer or winter is a challenging task for state of the art algorithms in computer vision and robotics. In this paper, we present a new approach to visual navigation under changing conditions dubbed SeqSLAM. Instead of calculating the single location most likely given a current image, our approach calculates the best candidate matching location within every local navigation sequence. Localization is then achieved by recognizing coherent sequences of these “local best matches”. This approach removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images. The approach is applicable over environment changes that render traditional feature-based techniques ineffective. Using two car-mounted camera datasets we demonstrate the effectiveness of the algorithm and compare it to one of the most successful feature-based SLAM algorithms, FAB-MAP. The perceptual change in the datasets is extreme; repeated traverses through environments during the day and then in the middle of the night, at times separated by months or years and in opposite seasons, and in clear weather and extremely heavy rain. While the feature-based method fails, the sequence-based algorithm is able to match trajectory segments at 100% precision with recall rates of up to 60%.
Resumo:
Appearance-based localization is increasingly used for loop closure detection in metric SLAM systems. Since it relies only upon the appearance-based similarity between images from two locations, it can perform loop closure regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale linearly not only with the size of the environment but also with the operation time of the platform. These properties impose severe restrictions on longterm autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. We present a set of improvements to the appearance-based SLAM algorithm CAT-SLAM to constrain computation scaling and memory usage with minimal degradation in performance over time. The appearance-based comparison stage is accelerated by exploiting properties of the particle observation update, and nodes in the continuous trajectory map are removed according to minimal information loss criteria. We demonstrate constant time and space loop closure detection in a large urban environment with recall performance exceeding FAB-MAP by a factor of 3 at 100% precision, and investigate the minimum computational and memory requirements for maintaining mapping performance.
Resumo:
his paper formulates an edge-based smoothed conforming point interpolation method (ES-CPIM) for solid mechanics using the triangular background cells. In the ES-CPIM, a technique for obtaining conforming PIM shape functions (CPIM) is used to create a continuous and piecewise quadratic displacement field over the whole problem domain. The smoothed strain field is then obtained through smoothing operation over each smoothing domain associated with edges of the triangular background cells. The generalized smoothed Galerkin weak form is then used to create the discretized system equations. Numerical studies have demonstrated that the ES-CPIM possesses the following good properties: (1) ES-CPIM creates conforming quadratic PIM shape functions, and can always pass the standard patch test; (2) ES-CPIM produces a quadratic displacement field without introducing any additional degrees of freedom; (3) The results of ES-CPIM are generally of very high accuracy.
Resumo:
Data mining techniques extract repeated and useful patterns from a large data set that in turn are utilized to predict the outcome of future events. The main purpose of the research presented in this paper is to investigate data mining strategies and develop an efficient framework for multi-attribute project information analysis to predict the performance of construction projects. The research team first reviewed existing data mining algorithms, applied them to systematically analyze a large project data set collected by the survey, and finally proposed a data-mining-based decision support framework for project performance prediction. To evaluate the potential of the framework, a case study was conducted using data collected from 139 capital projects and analyzed the relationship between use of information technology and project cost performance. The study results showed that the proposed framework has potential to promote fast, easy to use, interpretable, and accurate project data analysis.
Resumo:
The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.
Resumo:
Incorporating knowledge based urban development (KBUD) strategies in the urban planning and development process is a challenging and complex task due to the fragmented and incoherent nature of the existing KBUD models. This paper scrutinizes and compares these KBUD models with an aim of identifying key and common features that help in developing a new comprehensive and integrated KBUD model. The features and characteristics of the existing KBUD models are determined through a thorough literature review and the analysis reveals that while these models are invaluable and useful in some cases, lack of a comprehensive perspective and absence of full integration of all necessary development domains render them incomplete as a generic model. The proposed KBUD model considers all central elements of urban development and sets an effective platform for planners and developers to achieve more holistic development outcomes. The proposed model, when developed further, has a high potential to support researchers, practitioners and particularly city and state administrations that are aiming to a knowledge-based development.
Resumo:
The research reported in this paper introduces a knowledge-based urban development assessment framework, which is constructed in order to evaluate and assist in the (re)formulation of local and regional policy frameworks and applications necessary in knowledge city transformations. The paper also reports the findings of an application of this framework in a comparative study of Boston, Vancouver, Melbourne and Manchester. The paper with its assessment framework: demonstrates an innovative way of examining the knowledge-based development capacity of cities by scrutinising their economic, socio-cultural, enviro-urban and institutional development mechanisms and capabilities; presents some of the generic indicators used to evaluate knowledge-based development performance of cities; reveals how a city can benchmark its development level against that of other cities, and; provides insights for achieving a more sustainable and knowledge-based development.
Resumo:
Based on Participatory Action Research (PAR), the case studies in this paper examine the psychosocial benefits and outcomes for clients of community based Leg Clubs. The Leg Club model was developed in the United Kingdom (UK) to address the issue of social isolation and non-compliance to leg ulcer treatment. Principles underpinning the Leg Club are based on the Participatory Action Framework (PAR) where the input and involvement of participants is central. This study identifies the strengths of the Leg Club in enabling and empowering people to improve the social context in which they function. In addition it highlights the potential of expanding operations that are normally clinically based (particularly in relation to chronic conditions) but transferable to community settings in order that that they become “agents of change” for addressing such issues as social isolation and the accompanying challenges that these present, including no-compliance to treatment.
Resumo:
Background: Radiation-induced skin reaction (RISR) is one of the most common and distressing side effects of radiotherapy in patients with cancer. It is featured with swelling, redness, itching, pain, breaks in skin, discomfort, and a burning sensation. There is a lack of convincing evidence supporting any single practice in the prevention or management of RISR. Methods/Designs: This double-blinded randomised controlled trial aims to investigate the effects of a natural oil-based emulsion containing allantoin (as known as Moogoo Udder Cream®) versus aqueous cream in reducing RISR, improving pain, itching and quality of life in this patient group. One group will receive Moogoo Udder Cream®. Another group will receive aqueous cream. Outcome measures will be collected using patient self-administered questionnaire, interviewer administered questionnaire and clinician assessment at commencement of radiotherapy, weekly during radiotherapy, and four weeks after the completion of radiotherapy. Discussion: Despite advances of radiologic advances and supportive care, RISR are still not well managed. There is a lack of efficacious interventions in managing RISR. While anecdotal evidence suggests that Moogoo Udder Cream® may be effective in managing RISR, research is needed to substantiate this claim. This paper presents the design of a double blind randomised controlled trial that will evaluate the effects of Moogoo Udder Cream® versus aqueous cream for managing in RISR in patients with cancer. Trial registration: ACTRN 12612000568819
Resumo:
Background: Most skin cancers are preventable by encouraging consistent use of sun protective behaviour. In Australia, adolescents have high levels of knowledge and awareness of the risks of skin cancer but exhibit significantly lower sun protection behaviours than adults. There is limited research aimed at understanding why people do or do not engage in sun protective behaviour, and an associated absence of theory-based interventions to improve sun safe behaviour. This paper presents the study protocol for a school-based intervention which aims to improve the sun safe behaviour of adolescents. Methods/design: Approximately 400 adolescents (aged 12-17 years) will be recruited through Queensland, Australia public and private schools and randomized to the intervention (n = 200) or 'wait-list' control group (n = 200). The intervention focuses on encouraging supportive sun protective attitudes and beliefs, fostering perceptions of normative support for sun protection behaviour, and increasing perceptions of control/self-efficacy over using sun protection. It will be delivered during three × one hour sessions over a three week period from a trained facilitator during class time. Data will be collected one week pre-intervention (Time 1), and at one week (Time 2) and four weeks (Time 3) post-intervention. Primary outcomes are intentions to sun protect and sun protection behaviour. Secondary outcomes include attitudes toward performing sun protective behaviours (i.e., attitudes), perceptions of normative support to sun protect (i.e., subjective norms, group norms, and image norms), and perceived control over performing sun protective behaviours (i.e., perceived behavioural control). Discussion: The study will provide valuable information about the effectiveness of the intervention in improving the sun protective behaviour of adolescents.
Resumo:
Despite a general belief that incentive mechanisms can improve value for money during procurement and performance during project execution, empirical research on the actual effects is nascent. This research focuses on the design and implementation of incentive mechanisms in four different infrastructure projects: two road reconstructions in the Netherlands and two building constructions in Australia. Based on an analytical framework of key motivation drivers, a cross cases analysis is conducted in view of performance on the contract assumptions, selection phase, execution phase and project contract performance. It was identified that despite significant differences in the project characteristics, results indicate that they experience similar contextual drivers on the incentive effectiveness. High value was placed on risk allocation and relationship building in the selection and construction phase. The differences can be explained from both contextual and project related characteristics. Although there are limitations with this research in drawing generalizations across two sets of case projects, the results provide a strong base to explore the nature of incentive systems across different geographical and contextual boundaries in future research.
Resumo:
This paper presents two novel concepts to enhance the accuracy of damage detection using the Modal Strain Energy based Damage Index (MSEDI) with the presence of noise in the mode shape data. Firstly, the paper presents a sequential curve fitting technique that reduces the effect of noise on the calculation process of the MSEDI, more effectively than the two commonly used curve fitting techniques; namely, polynomial and Fourier’s series. Secondly, a probability based Generalized Damage Localization Index (GDLI) is proposed as a viable improvement to the damage detection process. The study uses a validated ABAQUS finite-element model of a reinforced concrete beam to obtain mode shape data in the undamaged and damaged states. Noise is simulated by adding three levels of random noise (1%, 3%, and 5%) to the mode shape data. Results show that damage detection is enhanced with increased number of modes and samples used with the GDLI.
Resumo:
Traditional recommendation methods offer items, that are inanimate and one way recommendation, to users. Emerging new applications such as online dating or job recruitments require reciprocal people-to-people recommendations that are animate and two-way recommendations. In this paper, we propose a reciprocal collaborative method based on the concepts of users' similarities and common neighbors. The dataset employed for the experiment is gathered from a real life online dating network. The proposed method is compared with baseline methods that use traditional collaborative algorithms. Results show the proposed method can achieve noticeably better performance than the baseline methods.
Resumo:
In this Issues Paper, I raise some key points relevant for any government which is considering its child protection and family welfare policy. In particular, I will raise questions about whether a form of legislative reporting duty is required, and if so, what consequences this has for child protection. The context of child maltreatment - and each form of maltreatment: physical abuse, sexual abuse, psychological or emotional abuse, and neglect - is extremely complex, and the overarching question of how to deal with these phenomena involve challenging normative, economic and practical questions. There are no easy or perfect solutions. Nor, often, is there the amount and quality of evidence available on which public policy approaches should be devised. However, from the best evidence about the history of this context, from research conducted in this field, and from the best evidence available about the nature, incidence and effects of different subtypes of maltreatment, some observations can be made which may help to inform deliberations. I outline 10 key issues related to mandatory reporting legislation while being mindful of the New Zealand context. My view, based on both research evidence and a concern to protect and promote children’s interests, and society’s interests, is that reporting laws in some form are necessary and can contribute substantially to child protection and enhancing family and community health and wellbeing. However, they are only one necessary part of a sound child protection system, being a method of tertiary and secondary prevention, and primary prevention efforts must also be prioritised. Moreover, it is essential that if a legislative reporting duty is enacted, it must be designed carefully and implemented soundly, and it must be integrated within a properly resourced child protection and family welfare system.