933 resultados para packing geometry
Resumo:
Surge flow phenomena. e.g.. as a consequence of a dam failure or a flash flood, represent free boundary problems. ne extending computational domain together with the discontinuities involved renders their numerical solution a cumbersome procedure. This contribution proposes an analytical solution to the problem, It is based on the slightly modified zero-inertia (ZI) differential equations for nonprismatic channels and uses exclusively physical parameters. Employing the concept of a momentum-representative cross section of the moving water body together with a specific relationship for describing the cross sectional geometry leads, after considerable mathematical calculus. to the analytical solution. The hydrodynamic analytical model is free of numerical troubles, easy to run, computationally efficient. and fully satisfies the law of volume conservation. In a first test series, the hydrodynamic analytical ZI model compares very favorably with a full hydrodynamic numerical model in respect to published results of surge flow simulations in different types of prismatic channels. In order to extend these considerations to natural rivers, the accuracy of the analytical model in describing an irregular cross section is investigated and tested successfully. A sensitivity and error analysis reveals the important impact of the hydraulic radius on the velocity of the surge, and this underlines the importance of an adequate description of the topography, The new approach is finally applied to simulate a surge propagating down the irregularly shaped Isar Valley in the Bavarian Alps after a hypothetical dam failure. The straightforward and fully stable computation of the flood hydrograph along the Isar Valley clearly reflects the impact of the strongly varying topographic characteristics on the How phenomenon. Apart from treating surge flow phenomena as a whole, the analytical solution also offers a rigorous alternative to both (a) the approximate Whitham solution, for generating initial values, and (b) the rough volume balance techniques used to model the wave tip in numerical surge flow computations.
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, rapidly switching magnetic gradient fields that, in extreme cases, may be able to elicit nerve stimulation. This paper presents theoretical investigations into the spatial distribution of induced current inside human tissues caused by pulsed z-gradient fields. A variety of gradient waveforms have been studied. The simulations are based on a new, high-definition, finite-difference time-domain method and a realistic inhomogeneous 10-mm resolution human body model with appropriate tissue parameters. it was found that the eddy current densities are affected not only by the pulse sequences but by many parameters such as the position of the body inside the gradient set, the local biological material properties and the geometry of the body. The discussion contains a comparison of these results with previous results found in the literature. This study and the new methods presented herein will help to further investigate the biological effects caused by the switched gradient fields in a MRI scan. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Slumping of hardsetting seedbeds upon wetting is likely to determine the shrinking and development of strength on drying. Different processes have been invoked, including aggregate disruption, material relocation, and compaction. To gain a better understanding of the role played by compaction compared with aggregate disruption in seedbed slumping and shrinking, mechanical analysis was combined with previous morphogenetical description. The global structural behavior of repacked seedbeds of a hardsetting sandy loam soil was studied after wetting and again after subsequent drying. Bulk density was measured in 5-mm-depth increments using gamma attenuation, and water content was determined at 10-mm-depth increments. Various wetting conditions were used to simulate a range of climatic and management conditions, including flood irrigation, furrow irrigation of a formed seedbed, drip irrigation, and rainfall. Aggregate coalescence under overburden pressure played the main role in slumping, even though microcracking enhanced coalescence. Most of the slumping occurred at calculated effective stress > 1.1 kPa. Intense aggregate breakdown at the top of seedbeds under fast wetting led to slight slumping because the resulting clogging of the initial interaggregate packing voids was balanced, in part, by the increase in microporosity resulting from aggregate disruption. However, aggregate coalescence induced by overburden pressure developing at the seedbed bottom often resulted in a strong decrease in total porosity. The effect of rainfall kinetic energy on crust bulk density was strong compared with the effect of fast wetting (bulk density increase of about 0.07 Mg m(-3) and 0.03 Mg m(-3), respectively) and could be ascribed to compaction rather than to aggregate breakdown. Shrinking on drying was related to the continuity of the microstructure resulting from wetting rather than to the intensity of slumping. Aggregate breakdown led to more shrinking than did aggregate coalescence.
Resumo:
The present work describes the crystal structure, vibrational spectra, and theoretical calculations of ammonium salts of 3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate, (NH(4))(2)(C(11)N(4)O(3)) [(NH(4))(2)CV], also known as ammonium croconate violet. This compound crystallizes in triclinic P (1) over bar and contains two water molecules per unit formula. The crystal packing is stabilized by hydrogen bonds involving water molecules and ammonium cations, giving rise to a 3D polymeric arrangement. In this structure, a pi-stacking interaction is not observed, as the smaller centroid-centroid distance is 4.35 angstrom. Ab initio electronic structure calculations under periodic boundary conditions were performed to predict vibrational and electronic properties. The vibrational analysis was used to assist the assignments of the Raman and infrared bands. The solid structure was optimized and characterized as a minimum in the potential-energy surface. The stabilizing intermolecular hydrogen bonds in the crystal Structure were characterized by difference charge-density analysis. The analysis of the density of states of (NH(4))(2)CV gives an energy gap of 1.4 eV with a significant contribution of carbon and nitrogen 2p states for valence and conduction bands.
Resumo:
The reconstitution of membrane proteins into liposomes is a useful tool to prepare antigenic components that induce immunity. We have investigated the influence of the dipalmitoylphosphatidylcholine (DPPC)/cholesterol molar ratio on the incorporation of a GPI-protein from Leishmania amazonensis on liposomes and Langmuir monolayers. The latter system is a well behaved and practical model, for understanding the effect of variables such as surface composition and lipid packing on protein incorporation. We have found that the DPPC/cholesterol molar ratio significantly alters the incorporation of the GPI-protein. In the absence of cholesterol, reconstitution is more difficult and proteoliposomes cannot be prepared, which we correlated with disruption of the DPPC layer. Our results provide important information that Could be employed in the development of a vaccine system for this disease or be used to produce other GPI-systems for biotechnological application. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Surface pressure (pi)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-alpha-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from pi-A curves applying the additivity rule by calculating the excess free energy of mixture (Delta G(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Rock bolt stress corrosion cracking (SCC) has been investigated using the linearly increasing stress test (LIST). One series of experiments determined the threshold stress of various bolt metallurgies (900 MPa for 1355AXRC, and 800 MPa for MAC and MA840B steels). The high values of threshold stress suggest that SCC begins in rock bolts when they are sheared by moving rock strata. SCC only occurred for environmental conditions which produce hydrogen on the sample surface, leading to hydrogen embrittlement and SCC. Different threshold potentials were determined for a range of metallurgies. Cold work was shown to increase the resistance of the steel to SCC. Rock bolt rib geometry does not have a direct impact on the SCC resistance properties of the bolt, although the process by which the ribs are produced can introduce tensile stresses into the bolt which lower its resistance to SCC. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports a parametric investigation and development of grinding technologies for micro aspherical mould inserts using parallel grinding method. The parametric investigation revealed that at nanometric scale the undeformed chip thickness has little influence on the surface finish of ground inserts. The grinding trace spacing has a slightly larger influence on the surface finish. A new technique was developed to true and dress the resin bonded micro wheels with mesh size of #3000, which produced a satisfactory wheel form accuracy and relatively high grain packing density. A form error compensation technique was also developed, with which mould inserts of submicron form accuracy were consistently produced. Using the developed technologies, micro aspherical inserts of diameters ranging from 200 mu m to 1000 mu m with surface finish of around 10 nm and form error of similar to 0.2-0.4 mu m were successfully fabricated. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Based on a self-similar array model, we systematically investigated the axial Young's modulus (Y-axis) of single-walled carbon nanotube (SWNT) arrays with diameters from nanometer to meter scales by an analytical approach. The results show that the Y-axis of SWNT arrays decreases dramatically with the increases of their hierarchy number (s) and is not sensitive to the specific size and constitution when s is the same, and the specific Young's modulus Y-axis(s) is independent of the packing configuration of SWNTs. Our calculations also show that the Y-axis of SWNT arrays with diameters of several micrometers is close to that of commercial high performance carbon fibers (CFs), but the Y-axis(s) of SWNT arrays is much better than that of high performance CFs. (C) 2005 American Institute of Physics.
Resumo:
This study presents the possibilities offered by microfluidic structures for the production of polymeric microspheres, using a process based upon the production of an emulsion. LTCC (Low Temperature Co-fired Ceramics) micromixers have been used for the preparation of polymeric microspheres. The effect of the geometry of the micromixers has been studied, with a specific focus on the size of the microspheres. as well as the control release properties of a model protein loaded within these microspheres. (C) 2008 Published by Elsevier B.V.
Resumo:
We explore the task of optimal quantum channel identification and in particular, the estimation of a general one-parameter quantum process. We derive new characterizations of optimality and apply the results to several examples including the qubit depolarizing channel and the harmonic oscillator damping channel. We also discuss the geometry of the problem and illustrate the usefulness of using entanglement in process estimation.
Resumo:
Integral mass conservation was widely accepted for the solute coupling to solve solute redistribution during equiaxed solidification so far. The present study revealed that the integral form was invalid for moving boundary problems as it could not represent the mass balance at the moving interface. Accordingly, differential mass conservation at the solid/liquid interface was used to solve solute diffusion for spherical geometry. The model was applied for hydrogen diffusion in solidification to validate that the hydrogen enrichment was significant and depended on the growth rate. (c) 2006 American Institute of Physics.
Resumo:
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.
Resumo:
Gold(III)-directed condensation of ethane-1,2-diamine with nitroethane and formaldehyde yielded the gold-coloured macrocyclic complex (cis-6,13-dimethyl-6,13-dinitro-1,4,8,11-tetraazacyclotetradecan-1-ido)gold(III) and the orange acyclic complex (1,9-diamino-5-methyl-5-nitro-3,7-diazanoran-3-ido)gold(III) in good yields. Dissolution in strongly acidic solution gave the colourless fully protonated complexes. The pendant nitro groups are disposed on the same side of the macrocycle in a cis geometry, as confirmed by crystal structure analysis. In both complexes the gold ion lies in a square-planar environment of four nitrogen donors, and the co-ordinate bond to the deprotonated amine is shorter than the remaining Au-N distances.
Resumo:
Fluid mixing in steady and unsteady Bow through a channel containing periodic square obstructions has been studied using a finite-difference simulation to determine fluid velocities, followed by the use of passive marker particle advection to look at fluid transport out of the cavities formed between each of the obstructions. The geometry and Bow conditions were chosen from the work by Perkins (1989, M.S. Thesis, Lehigh University; 1992, Ph.D. Thesis, Lehigh University); who investigated heat transfer enhancement due to unsteady flow through such an obstructed channel. Particle advection shows that Bow regimes which are predicted to give good mixing based on snapshots of instantaneous streamline contour plots were not necessarily able to efficiently mix fluid which started in the cavity regions throughout the channel. The use of Poincare sections shows regular regions existing under these conditions which inhibit efficient fluid transport. These regular regions are found to disappear when the unsteady Bow velocity is increased. (C) 1997 Elsevier Science Ltd.