987 resultados para oxygen-sensing pathway
Resumo:
The Center for Transportation Research and Education (CTRE) issued a report in July 2003, based on a sample study of the application of remote sensed image land use change detection to the methodology of traffic monitoring in Blackhawk County, Iowa. In summary, the results indicated a strong correlation and a statistically significant regression coefficient between the identification of built-up land use change areas from remote sensed data and corresponding changes in traffic patterns, expressed as vehicle miles traveled (VMT). Based on these results, the Iowa Department of Transportation (Iowa DOT) requested that CTRE expand the study area to five counties in the southwest quadrant of the state. These counties are scheduled for traffic counts in 2004, and the Iowa DOT desired the data to 1) evaluate the current methodology used to place the devices; 2) potentially influence the placement of traffic counting devices in areas of high built-up land use change; and 3) determine if opportunities exist to reduce the frequency and/or density of monitoring activity in lower trafficked rural areas of the state. This project is focused on the practical application of built-up land use change data for placement of traffic count data recording devices in five southwest Iowa counties.
Resumo:
Jasmonates control defense gene expression and male fertility in the model plant Arabidopsis thaliana. In both cases, the involvement of the jasmonate pathway is complex, involving large-scale transcriptional reprogramming. Additionally, jasmonate signaling is hard-wired into the auxin, ethylene, and salicylate signal networks, all of which are under intense investigation in Arabidopsis. In male fertility, jasmonic acid (JA) is the essential signal intervening both at the level of anther elongation and in pollen dehiscense. A number of genes potentially involved in jasmonate-dependent anther elongation have recently been discovered. In the case of defense, at least two jasmonates, JA and its precursor 12-oxo-phytodienoic acid (OPDA), are necessary for the fine-tuning of defense gene expression in response to various microbial pathogens and arthropod herbivores. However, only OPDA is required for full resistance to some insects and fungi. Other jasmonates probably affect yet more physiological responses. A series of breakthroughs have identified the SKP/CULLIN/F-BOX (SCF), CORONATINE INSENSITIVE (COI1) complex, acting together with the CONSTITUTIVE PHOTOMORPHOGENIC 9 (COP9) signalosome, as central regulatory components of jasmonate signaling in Arabidopsis. The studies, mostly involving mutational approaches, have paved the way for suppressor screens that are expected to further extend our knowledge of jasmonate signaling. When these and other new mutants affecting jasmonate signaling are characterized, new nodes will be added to the Arabidopsis Jasmonate Signaling Pathway Connections Map, and the lists of target genes regulated by jasmonates in Arabidopsis will be expanded.
Resumo:
This report evaluates the use of remotely sensed images in implementing the Iowa DOT LRS that is currently in the stages of system architecture. The Iowa Department of Transportation is investing a significant amount of time and resources into creation of a linear referencing system (LRS). A significant portion of the effort in implementing the system will be creation of a datum, which includes geographically locating anchor points and then measuring anchor section distances between those anchor points. Currently, system architecture and evaluation of different data collection methods to establish the LRS datum is being performed for the DOT by an outside consulting team.
Resumo:
Résumé Les canaux ioniques ASICs (acid-sensing ion channels) appartiennent à la famille des canaux ENaC/Degenerin. Pour l'instant, quatre gènes (1 à 4) ont été clonés dont certains présentent des variants d'épissage. Leur activation par une acidification rapide du milieu extracellulaire génère un courant entrant transitoire essentiellement sodique accompagné pour certains types d'ASICs d'une phase soutenue. Les ASICs sont exprimés dans le système nerveux, central (SNC) et périphérique (SNP). On leur attribue un rôle dans l'apprentissage, la mémoire et l'ischémie cérébrale au niveau central ainsi que dans la nociception (douleur aiguë et inflammatoire) et la méchanotransduction au niveau périphérique. Toutefois, les données sont parfois contradictoires. Certaines études suggèrent qu'ils sont des senseurs primordiaux impliqués dans la détection de l'acidification et la douleur. D'autres études suggèrent plutôt qu'ils ont un rôle modulateur inhibiteur dans la douleur. De plus, le fait que leur activation génère majoritairement un courant transitoire alors que les fibres nerveuses impliquées dans la douleur répondent à un stimulus nocif avec une adaptation lente suggère que leurs propriétés doivent être modulés par des molécules endogènes. Dans une première partie de ma thèse, nous avons abordé la question de l'expression fonctionnelle des ASICs dans les neurones sensoriels primaires afférents du rat adulte pour clarifier le rôle des ASICs dans les neurones sensoriels. Nous avons caractérisé leurs propriétés biophysiques et pharmacologiques par la technique du patch-clamp en configuration « whole-cell ». Nous avons pu démontrer que près de 60% des neurones sensoriels de petit diamètre expriment des courants ASICs. Nous avons mis en évidence trois types de courant ASIC dans ces neurones. Les types 1 et 3 ont des propriétés compatibles avec un rôle de senseur du pH alors que le type 2 est majoritairement activé par des pH inférieurs à pH6. Le type 1 est médié par des homomers de la sous-unité ASIC1 a qui sont perméables aux Ca2+. Nous avons étudié leur co-expression avec des marqueurs des nocicepteurs ainsi que la possibilité d'induire une activité neuronale suite à une acidification qui soit dépendante des ASICs. Le but était d'associer un type de courant ASIC avec une fonction potentielle dans les neurones sensoriels. Une majorité des neurones exprimant les courants ASIC co-expriment des marqueurs des nocicepteurs. Toutefois, une plus grande proportion des neurones exprimant le type 1 n'est pas associée à la nociception par rapport aux types 2 et 3. Nous avons montré qu'il est possible d'induire des potentiels d'actions suite à une acidification. La probabilité d'induction est proportionnelle à la densité des courants ASIC et à l'acidité de la stimulation. Puis, nous avons utilisé cette classification comme un outil pour appréhender les potentielles modulations fonctionnelles des ASICs dans un model de neuropathie (spared nerve injury). Cette approche fut complétée par des expériences de «quantitative RT-PCR ». En situation de neuropathie, les courants ASIC sont dramatiquement changés au niveau de leur expression fonctionnelle et transcriptionnelle dans les neurones lésés ainsi que non-lésés. Dans une deuxième partie de ma thèse, suite au test de différentes substances sécrétées lors de l'inflammation et l'ischémie sur les propriétés des ASICs, nous avons caractérisé en détail la modulation des propriétés des courants ASICs notamment ASIC1 par les sérines protéases dans des systèmes d'expression recombinants ainsi que dans des neurones d'hippocampe. Nous avons montré que l'exposition aux sérine-protéases décale la dépendance au pH de l'activation ainsi que la « steady-state inactivation »des ASICs -1a et -1b vers des valeurs plus acidiques. Ainsi, l'exposition aux serine protéases conduit à une diminution du courant quand l'acidification a lieu à partir d'un pH7.4 et conduit à une augmentation du courant quand l'acidification alleu à partir d'un pH7. Nous avons aussi montré que cette régulation a lieu des les neurones d'hippocampe. Nos résultats dans les neurones sensoriels suggèrent que certains courants ASICs sont impliqués dans la transduction de l'acidification et de la douleur ainsi que dans une des phases du processus conduisant à la neuropathie. Une partie des courants de type 1 perméables au Ca 2+ peuvent être impliqués dans la neurosécrétion. La modulation par les sérines protéases pourrait expliquer qu'en situation d'acidose les canaux ASICs soient toujours activables. Résumé grand publique Les neurones sont les principales cellules du système nerveux. Le système nerveux est formé par le système nerveux central - principalement le cerveau, le cervelet et la moelle épinière - et le système nerveux périphérique -principalement les nerfs et les neurones sensoriels. Grâce à leur nombreux "bras" (les neurites), les neurones sont connectés entre eux, formant un véritable réseau de communication qui s'étend dans tout le corps. L'information se propage sous forme d'un phénomène électrique, l'influx nerveux (ou potentiels d'actions). A la base des phénomènes électriques dans les neurones il y a ce que l'on appelle les canaux ioniques. Un canal ionique est une sorte de tunnel qui traverse l'enveloppe qui entoure les cellules (la membrane) et par lequel passent les ions. La plupart de ces canaux sont normalement fermés et nécessitent d'être activés pour s'ouvrire et générer un influx nerveux. Les canaux ASICs sont activés par l'acidification et sont exprimés dans tout le système nerveux. Cette acidification a lieu notamment lors d'une attaque cérébrale (ischémie cérébrale) ou lors de l'inflammation. Les expériences sur les animaux ont montré que les canaux ASICs avaient entre autre un rôle dans la mort des neurones lors d'une attaque cérébrale et dans la douleur inflammatoire. Lors de ma thèse je me suis intéressé au rôle des ASICs dans la douleur et à l'influence des substances produites pendant l'inflammation sur leur activation par l'acidification. J'ai ainsi pu montrer chez le rat que la majorité des neurones sensoriels impliqués dans la douleur ont des canaux ASICs et que l'activation de ces canaux induit des potentiels d'action. Nous avons opéré des rats pour qu'ils présentent les symptômes d'une maladie chronique appelée neuropathie. La neuropathie se caractérise par une plus grande sensibilité à la douleur. Les rats neuropathiques présentent des changements de leurs canaux ASICs suggérant que ces canaux ont une peut-être un rôle dans la genèse ou les symptômes de cette maladie. J'ai aussi montré in vitro qu'un type d'enryme produit lors de l'inflammation et l'ischémie change les propriétés des ASICs. Ces résultats confirment un rôle des ASICs dans la douleur suggérant notamment un rôle jusque là encore non étudié dans la douleur neuropathique. De plus, ces résultats mettent en évidence une régulation des ASICs qui pourrait être importante si elle se confirmait in vivo de part les différents rôles des ASICs. Abstract Acid-sensing ion channels (ASICs) are members of the ENaC/Degenerin superfamily of ion channels. Their activation by a rapid extracellular acidification generates a transient and for some ASIC types also a sustained current mainly mediated by Na+. ASICs are expressed in the central (CNS) and in the peripheral (PNS) nervous system. In the CNS, ASICs have a putative role in learning, memory and in neuronal death after cerebral ischemia. In the PNS, ASICs have a putative role in nociception (acute and inflammatory pain) and in mechanotransduction. However, studies on ASIC function are somewhat controversial. Some studies suggest a crucial role of ASICs in transduction of acidification and in pain whereas other studies suggest rather a modulatory inhibitory role of ASICs in pain. Moreover, the basic property of ASICs, that they are activated only transiently is irreconcilable with the well-known property of nociception that the firing of nociceptive fibers demonstrated very little adaptation. Endogenous molecules may exist that can modulate ASIC properties. In a first part of my thesis, we addressed the question of the functional expression of ASICs in adult rat dorsal root ganglion (DRG) neurons. Our goal was to elucidate ASIC roles in DRG neurons. We characterized biophysical and pharmacological properties of ASIC currents using the patch-clamp technique in the whole-cell configuration. We observed that around 60% of small-diameter sensory neurons express ASICs currents. We described in these neurons three ASIC current types. Types 1 and 3 have properties compatible with a role of pH-sensor whereas type 2 is mainly activated by pH lower than pH6. Type 1 is mediated by ASIC1a homomultimers which are permeable to Ca 2+. We studied ASIC co-expression with nociceptor markers. The goal was to associate an ASIC current type with a potential function in sensory neurons. Most neurons expressing ASIC currents co-expressed nociceptor markers. However, a higher proportion of the neurons expressing type 1 was not associated with nociception compared to type 2 and -3. We completed this approach with current-clamp measurements of acidification-induced action potentials (APs). We showed that activation of ASICs in small-diameter neurons can induce APs. The probability of AP induction is positively correlated with the ASIC current density and the acidity of stimulation. Then, we used this classification as a tool to characterize the potential functional modulation of ASICs in the spared nerve injury model of neuropathy. This approach was completed by quantitative RT-PCR experiments. ASICs current expression was dramatically changed at the functional and transcriptional level in injured and non-injured small-diameter DRG neurons. In a second part of my thesis, following an initial screening of the effect of various substances secreted during inflammation and ischemia on ASIC current properties, we characterized in detail the modulation of ASICs, in particular of ASIC1 by serine proteases in a recombinant expression system as well as in hippocampal neurons. We showed that protease exposure shifts the pH dependence of ASIC1 activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in the current response if ASIC1 is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provided evidence that this bi-directional regulation of ASIC1a function also occurs in hippocampal neurons. Our results in DRG neurons suggest that some ASIC currents are involved in the transduction of peripheral acidification and pain. Furthermore, ASICs may participate to the processes leading to neuropathy. Some Ca 2+-permeable type 1 currents may be involved in neurosecretion. ASIC modulation by serine proteases may be physiologically relevant, allowing ASIC activation under sustained slightly acidic conditions.
Resumo:
This study aimed to compare oxygen uptake ( V˙O2), hormone and plasma metabolite responses during the 30 min after submaximal incremental exercise (Incr) performed at the same relative/absolute exercise intensity and duration in lean (L) and obese (O) men. Eight L and 8 O men (BMI: 22.9±0.4; 37.2±1.8 kg · m(-2)) completed Incr and were then seated for 30 min. V˙O2 was monitored during the first 10 min and from the 25-30(th) minutes of recovery. Blood samples were drawn for the determination of hormone (catecholamines, insulin) and plasma metabolite (NEFA, glycerol) concentrations. Excess post-exercise oxygen consumption (EPOC) magnitude during the first 10 min was similar in O and in L (3.5±0.4; 3.4±0.3 liters, respectively, p=0.86). When normalized to percent change ( V˙O2END=100%), % V˙O2END during recovery was significantly higher from 90-120 s in O than in L (p≤0.04). There were no significant differences in catecholamines (p≥0.24), whereas insulin was significantly higher in O than in L during recovery (p=0.01). The time-course of glycerol was similar from 10-30 min of recovery (-42% for L; -41% for O, p=0.85), whereas significantly different patterns of NEFA were found from 10-30 min of recovery between groups (-18% for L; +8% for O, p=0.03). Despite similar EPOC, a difference in V˙O2 modulation between groups was observed, likely due to faster initial rates of V˙O2 decline in L than in O. The different patterns of NEFA between groups may suggest a lower NEFA reesterification during recovery in O, which was not involved in the rapid EPOC component.
Resumo:
Abstract : The maintenance of genome stability is a challenge for all living organisms. DNA is regularly subjected to chemical alterations by both endogenous and exogenous DNA damaging agents. If left unrepaired, these lesions will create mutations or lead to chromosomal instability. DNA crosslinking agents probably bring about the most toxic lesions. By linking covalently the two strands of DNA, crosslinking agents will impede essential cellular processes such as replication and transcription. Cells from Fanconi anaemia patients are extremely sensitive to these agents. Fanconi anaemia (FA) is a rare chromosomal instability disorder that leads to developmental defects, pancytopenia and cancer susceptibility. FA is a genetically heterogeneous disease with thirteen complementation groups identified. Proteins encoded by the FA genes work together in the FA pathway. Eight of these proteins form the FA core complex (FANC-A, B, C,E, F, G, L and -M), whose integrity is required to monoubiquitinate FANCD2 and FANCI in response to DNA damage. The hypersensitivity of FA cells to crosslinking agents, which perturb the progression of replication forks, has led to the hypothesis that FA proteins play a crucial role in the response to replication stress. However, at the molecular level, the functions of the FA pathway remain largely unknown. Our efforts were first focused on the characterization of FANCD2, "the key effector of the FA pathway". Using different substrates, we found that in vitro, purified hFANCD2 preferentially binds single strand DNA and double strand DNA extremities. Concomitantly, FANCM was identified as a new component of the FA core complex. Moreover FANCM was shown to have specific branch migration activities and probably a role as a "landing platform" on DNA for the other components of the core complex. By using FANCM mutants carrying deletions within the internal domain, we investigated the role of FANCM as a DNA anchor protein for the core complex. We observed that indeed, a specific part of the internal domain of FANCM interacts with components of the core complex. Finally, in collaboration with Weidong Wang's lab we characterized two new components of the FA pathway: FAAP10 and FAAP16. As a heterodimer these two proteins show affinity for dsDNA, and anneal complementary oligonucleotides in vitro. Moreover these proteins can associate with FANCM via a part of its internal domain. We find that FANCM, FAAP 10 and FAAP 16 can co-exist on the branch point of replication and recombination intermediates, and that FAAP10 and FAAP16 stimulate replication fork reversal by FANCM. These results suggest that FANCM may function as a landing platform for the core complex. After loading on DNA, the core complex can activate FANCD2 through monoubiquitination leading to its recruitment to the site of damage. Since ssDNA and double strand breaks are intermediates that are generated as a consequence of collapsed replication forks, FANCD2 by binding to ds DNA ends and ssDNA could protect such structures from the recombination repair machinery and prevent unscheduled recombination events. Alternatively, FANCD2 could avoid nucleases from gaining access to collapsed forks, preserving the DNA in state that can be used as a starting point for resumption of DNA synthesis. The overall comprehension of the FA pathway is far from been complete. Our results unravel new aspects of Fanconi Anaemia, which hopefully in the near future will address keys questions leading to a better understanding of the fascinating Fanconi Anaemia. Résumé : Le maintien de l'intégrité du génome est fondamentale chez tous les organismes vivants. L'ADN est constamment altéré par des composés aussi bien endogènes qu'exogènes. Si ces altérations ne sont pas réparées, elles peuvent conduire à l'apparition de mutations, ainsi qu'à une instabilité génomique accrue. Les lésions les plus sévères qui peuvent survenir sur l'ADN, sont les pontages inter caténaires. Des agents pontants en liant de façon covalente les deux brins d'ADN, vont empêcher le déroulement normal de processus cellulaires essentiels tels que la réplication ou la transcription. La compréhension des mécanismes permettant à la cellule de tolérer et réparer ces lésions est primordiale, notamment dans le cas des patients atteints de l'anémie de Fanconi qui présentent une très grande sensibilité à ces composés pontants. L'anémie de Fanconi est une maladie génétique rare appartenant à un groupe de pathologies associées à une grande instabilité chromosomique. Les patients atteints de l'anémie de Fanconi présentent des malformations du squelette, une pancytopénie et une forte propension à la survenue de cancer. L'anémie de Fanconi est génétiquement très hétérogène. À ce jour, 13 gènes codant pour 13 protéines FANC différentes ont été identifiés. Huit de ces protéines fonctionnent ensemble au sein d'un complexe (nommé le complexe FANC) ayant pour but de monoubiquitiner FANCD2 et FANCI en réponse à la formation de lésions sur l'ADN. L'extrême sensibilité des cellules de patients atteints de l'anémie de Fanconi à ces agents pontant l'ADN suggère l'implication des protéines FANC dans la réponse cellulaire suite à une stress réplicatif. Cependant, le rôle moléculaire exact de ces protéines demeure encore inconnu. Après purification, nous avons observé que FANCD2 était capable de lier l'ADN simple brin, ainsi que les extrémités d'ADN in vitro. Dans le même temps, FANCM fut identifié comme appartenant au complexe FANC. FANCM est décrit comme une translocase capable de promouvoir le déplacement de point de jonction dans des structures d'ADN spécifiques in vitro. De plus, en se liant à l'ADN, FANCM peut agir comme une plateforme pour les autres protéines FANC, leur permettant ainsi d'être adressées à l'ADN. En créant des protéines FANCM recombinantes ayant des délétions dans le domaine interne, nous avons pu observer que certaines protéines du complexe FANC se fixent à des sites spécifiques sur le domaine interne de FANCM. Enfin, au travers d'une collaboration, nous avons été amenés à caractériser deux nouvelles protéines appartenant au complexe FANC : FAAP 10 et FAAP16. Elles s'associent à FANCM par l'intermédiaire du domaine interne, et forment ainsi un hétérotrimére. La présence de FAAP10 et FAAP16 n'affecte pas la liaison de FANCM à l'ADN, mais semble potentialiser son activité de régression in vitro. FANCM semble donc fonctionner comme une plateforme pour les autres composants du complexe FANC. Ces derniers, une fois liés à l'ADN permettent la monoubiquitination de FANCD2 et son recrutement au site lésé de l'ADN. FANCD2 en se liant de façon préférentielle à l'ADN simple brin et aux extrémités d'ADN qui sont générés lors de l'arrêt et du démantèlement d'une fourche de réplication, pourrait protéger ces même fourches de réplication arrêtées, d'évènements de recombinaison aléatoires. Nos résultats apportent de nouveaux éléments concernant les mécanismes moléculaires de l'anémie de Fanconi. Enfin, l'étude de l'anémie de Fanconi permet aussi de mieux comprendre les mécanismes mis en place par la cellule pour tolérer des lésions survenant lors de la réplication.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
Mutations in SH3TC2 trigger autosomal recessive demyelinating Charcot-Marie-Tooth type 4C (CMT4C) neuropathy. Sh3tc2 is specifically expressed in Schwann cells and is necessary for proper myelination of peripheral axons. In line with the early onset of neuropathy observed in patients with CMT4C, our analyses of the murine model of CMT4C revealed that the myelinating properties of Sh3tc2-deficient Schwann cells are affected at an early stage. This early phenotype is associated with changes in the canonical Nrg1/ErbB pathway involved in control of myelination. We demonstrated that Sh3tc2 interacts with ErbB2 and plays a role in the regulation of ErbB2 intracellular trafficking from the plasma membrane upon Nrg1 activation. Interestingly, both the loss of Sh3tc2 function in mice and the pathological mutations present in CMT4C patients affect ErbB2 internalization, potentially altering its downstream intracellular signaling pathways. Altogether, our results indicate that the molecular mechanism for the axonal size sensing is disturbed in Sh3tc2-deficient myelinating Schwann cells, thus providing a novel insight into the pathophysiology of CMT4C neuropathy.
Resumo:
Purpose: Consequently to the principle that photoreceptors have to be at a very precise development stage to be successfully transplanted (MacLaren 2006), we are trying to mimic this development stage in vitro using retinal stem cells. The latter one isolated from the newborn mouse retina, derived from the radial glia population, which were previously isolated and characterized in our laboratory. We developed a protocol to commit these cells to the photoreceptor fate, but even if the percentage of cells expressing photoreceptor markers is high (30%), the differentiation process is incomplete so far (Merhi-Soussi 2006). Methods: In order to ameliorate photoreceptor differentiation, we hypothesized that the Notch pathway may interfere with this process by either promoting glia commitment, or maintaining an undifferentiated state. We are thus using a gamma-secretase inhibitor (DAPT), which inhibits Notch receptor cleavage and thus Notch activation. DAPT was used either during the whole differentiation stimulation, or only during a restricted period in two various retinal stem cell lines (RSC AA and RSC MP1). Results: RT-PCR performed during cell proliferation, showed the same positive expression in both cell lines for the following genes: Math3, Six3, Hes1, NeuroD, Pax6 and Notch1. Additionally, Mash1, Hes5, Prox1, Crx and Otx2 were detected in both cell lines but with a stronger expression in RSC MP1. Opposite results were obtained for Chx10. Nrl, Peripherin/RDS, GFAP and Math5 were detected neither in RSC AA, nor in RSC MP1. The constant presence of DAPT i) leads to a 233% (RSC AA) or 900% (RSC MP1) increase in peripherin/RDS-positive (photoreceptor marker) cells, compared to controls (no DAPT, n=3, P<0.02) along with a 68% (RSC AA) or 80% (RSC MP1) decrease in GFAP- positive cells (n=3, P<0.04), ii) modifies the ratio between uni-/bi- (23%) and multi- (77%) polar peripherin/RDS-positive cells to 45% and 55%, respectively, for both cell lines and iii) reduces by 50% the total cell number during the whole differentiation process for both cell lines. Conclusions: We are now exploring whether this reduction in total cell number is due to inhibition of cell proliferation or to cell death and whether photoreceptor differentiation is promoted instead of glial induction. We also want to confirm the results obtained with DAPT with RSCs isolated from Notch1-loxP mice. Such protocol may help to better mimic photoreceptor development, but this needs to be confirmed by genomic and proteomic profile analyses.
Resumo:
Abstract
Resumo:
Letter to the Editor on Wang M, Wang Q, Wang Z, Zhang X, Pan Y. The molecular evolutionary patterns of the insulin/FOXO signaling pathway