878 resultados para overall extraction curves
Resumo:
Neocuproine has been covalently bound to silica-coated maghemite(c-Fe2O3) magnetic nanoparticles (MNPs) by a phenyl ether linkage. The resulting MNPs are able to remove Cu(II) from 12 ppm aqueous solution with an extraction efficiency of up to 99% at pH 2.
Resumo:
Analysis of microbial gene expression during host colonization provides valuable information on the nature of interaction, beneficial or pathogenic, and the adaptive processes involved. Isolation of bacterial mRNA for in planta analysis can be challenging where host nucleic acid may dominate the preparation, or inhibitory compounds affect downstream analysis, e.g., quantitative reverse transcriptase PCR (qPCR), microarray, or RNA-seq. The goal of this work was to optimize the isolation of bacterial mRNA of food-borne pathogens from living plants. Reported methods for recovery of phytopathogen-infected plant material, using hot phenol extraction and high concentration of bacterial inoculation or large amounts of infected tissues, were found to be inappropriate for plant roots inoculated with Escherichia coli O157:H7. The bacterial RNA yields were too low and increased plant material resulted in a dominance of plant RNA in the sample. To improve the yield of bacterial RNA and reduce the number of plants required, an optimized method was developed which combines bead beating with directed bacterial lysis using SDS and lysozyme. Inhibitory plant compounds, such as phenolics and polysaccharides, were counteracted with the addition of high-molecular-weight polyethylene glycol and hexadecyltrimethyl ammonium bromide. The new method increased the total yield of bacterial mRNA substantially and allowed assessment of gene expression by qPCR. This method can be applied to other bacterial species associated with plant roots, and also in the wider context of food safety.
Resumo:
Bis-triazinylphenanthroline ligands (BTPhens), which contain additional alkyl (n-butyl and sec-butyl) groups attached to the triazine rings, have been synthesized, and the effects of this alkyl substitution on their extraction properties with Ln(III) and An(III) cations in simulated nuclear waste solutions have been studied. The speciation of n-butyl-substituted ligand (C4- BTPhen) with some trivalent lanthanide nitrates was elucidated by 1 H-NMR spectroscopic titrations. These experiments have shown that the dominant species in solution were the 1:2 complexes [Ln(III)(BTPhen)2], even at higher Ln(III) concentrations, and the relative stability of 2:1 to 1:1 BTPhen-Ln(III) complexes varied with different lanthanides. As expected, sec-butylsubstituted ligand (sec-C4 BTPhen) showed higher solubility than C4-BTPhen in certain diluents. A greater separation factor (SFAm/Eu = ca. 210) was observed for sec-C4-BTPhen compared to C4-BTPhen (SFAm/Eu = ca. 125) in 1-octanol at 4 M HNO3 solutions. The greater separation factor may be due to the higher solubility of the 2:1 complex for sec-C4-BTPhen at the interface than the 1:1 complex of C4-BTPhen.
Resumo:
The Land surface Processes and eXchanges (LPX) model is a fire-enabled dynamic global vegetation model that performs well globally but has problems representing fire regimes and vegetative mix in savannas. Here we focus on improving the fire module. To improve the representation of ignitions, we introduced a reatment of lightning that allows the fraction of ground strikes to vary spatially and seasonally, realistically partitions strike distribution between wet and dry days, and varies the number of dry days with strikes. Fuel availability and moisture content were improved by implementing decomposition rates specific to individual plant functional types and litter classes, and litter drying rates driven by atmospheric water content. To improve water extraction by grasses, we use realistic plant-specific treatments of deep roots. To improve fire responses, we introduced adaptive bark thickness and post-fire resprouting for tropical and temperate broadleaf trees. All improvements are based on extensive analyses of relevant observational data sets. We test model performance for Australia, first evaluating parameterisations separately and then measuring overall behaviour against standard benchmarks. Changes to the lightning parameterisation produce a more realistic simulation of fires in southeastern and central Australia. Implementation of PFT-specific decomposition rates enhances performance in central Australia. Changes in fuel drying improve fire in northern Australia, while changes in rooting depth produce a more realistic simulation of fuel availability and structure in central and northern Australia. The introduction of adaptive bark thickness and resprouting produces more realistic fire regimes in Australian savannas. We also show that the model simulates biomass recovery rates consistent with observations from several different regions of the world characterised by resprouting vegetation. The new model (LPX-Mv1) produces an improved simulation of observed vegetation composition and mean annual burnt area, by 33 and 18% respectively compared to LPX.
Resumo:
Immunodiagnostic microneedles provide a novel way to extract protein biomarkers from the skin in a minimally invasive manner for analysis in vitro. The technology could overcome challenges in biomarker analysis specifically in solid tissue, which currently often involves invasive biopsies. This study describes the development of a multiplex immunodiagnostic device incorporating mechanisms to detect multiple antigens simultaneously, as well as internal assay controls for result validation. A novel detection method is also proposed. It enables signal detection specifically at microneedle tips and therefore may aid the construction of depth profiles of skin biomarkers. The detection method can be coupled with computerised densitometry for signal quantitation. The antigen specificity, sensitivity and functional stability of the device were assessed against a number of model biomarkers. Detection and analysis of endogenous antigens (interleukins 1α and 6) from the skin using the device was demonstrated. The results were verified using conventional enzyme-linked immunosorbent assays. The detection limit of the microneedle device, at ≤10 pg/mL, was at least comparable to conventional plate-based solid-phase enzyme immunoassays.
Resumo:
Twitter has become a dependable microblogging tool for real time information dissemination and newsworthy events broadcast. Its users sometimes break news on the network faster than traditional newsagents due to their presence at ongoing real life events at most times. Different topic detection methods are currently used to match Twitter posts to real life news of mainstream media. In this paper, we analyse tweets relating to the English FA Cup finals 2012 by applying our novel method named TRCM to extract association rules present in hash tag keywords of tweets in different time-slots. Our system identify evolving hash tag keywords with strong association rules in each time-slot. We then map the identified hash tag keywords to event highlights of the game as reported in the ground truth of the main stream media. The performance effectiveness measure of our experiments show that our method perform well as a Topic Detection and Tracking approach.
Resumo:
We propose a topological approach to the problem of determining a curve from its iterated integrals. In particular, we prove that a family of terms in the signature series of a two dimensional closed curve with finite p-variation, 1≤p<2, are in fact moments of its winding number. This relation allows us to prove that the signature series of a class of simple non-smooth curves uniquely determine the curves. This implies that outside a Chordal SLEκ null set, where 0<κ≤4, the signature series of curves uniquely determine the curves. Our calculations also enable us to express the Fourier transform of the n-point functions of SLE curves in terms of the expected signature of SLE curves. Although the techniques used in this article are deterministic, the results provide a platform for studying SLE curves through the signatures of their sample paths.
Resumo:
We explicitly construct simple, piecewise minimizing geodesic, arbitrarily fine interpolation of simple and Jordan curves on a Riemannian manifold. In particular, a finite sequence of partition points can be specified in advance to be included in our construction. Then we present two applications of our main results: the generalized Green’s theorem and the uniqueness of signature for planar Jordan curves with finite p -variation for 1⩽p<2.
Resumo:
Background, aim and scope Soil organic matter (SOM) is known to increase with time as landscapes recover after a major disturbance; however, little is known about the evolution of the chemistry of SOM in reconstructed ecosystems. In this study, we assessed the development of SOM chemistry in a chronosequence (space for time substitution) of restored Jarrah forest sites in Western Australia. Materials and methods Replicated samples were taken at the surface of the mineral soil as well as deeper in the profile at sites of 1, 3, 6, 9, 12, and 17 years of age. A molecular approach was developed to distinguish and quantify numerous individual compounds in SOM. This used accelerated solvent extraction in conjunction with gas chromatography mass spectrometry. A novel multivariate statistical approach was used to assess changes in accelerated solvent extraction (ASE)-gas chromatography-mass spectrometry (GCMS) spectra. This enabled us to track SOM developmental trajectories with restoration time. Results Results showed total carbon concentrations approached that of native forests soils by 17 years of restoration. Using the relate protocol in PRIMER, we demonstrated an overall linear relationship with site age at both depths, indicating that changes in SOM chemistry were occurring. Conclusions The surface soils were seen to approach native molecular compositions while the deeper soil retained a more stable chemical signature, suggesting litter from the developing diverse plant community has altered SOM near the surface. Our new approach for assessing SOM development, combining ASE-GCMS with illuminating multivariate statistical analysis, holds great promise to more fully develop ASE for the characterisation of SOM.
Resumo:
BACKGROUND: Chemical chitin extraction generates large amounts of wastes and increases partial deacetylation of the product. Therefore, the use of biological methods for chitin extraction is an interesting alternative. The effects of process conditions on enzyme assisted extraction of chitin from the shrimp shells in a systematic way were the focal points of this study. RESULTS: Demineralisation conditions of 25C, 20 min, shells-lactic acid ratio of 1:1.1 w/w; and shells-acetic acid ratio of 1:1.2 w/w, the maximum demineralisation values were 98.64 and 97.57% for lactic and acetic acids, respectively. A total protein removal efficiency of 91.10% by protease from Streptomyces griseus with enzyme-substrate ratio 55 U/g, pH 7.0 and incubation time 3 h is obtained when the particle size range is 50-25 μm, which was identified as the most critical factor. The X-ray diffraction and 13C NMR spectroscopy analysis showed that the lower percent crystallinity and higher degree of acetylation of chitin from enzyme assisted extraction may exhibit better solubility properties and less depolymerisation in comparison with chitin from the chemical extraction. CONCLUSION: The present work investigates the effects of individual factors on process yields, and it has shown that, if the particle size is properly controlled a reaction time of 3 h is more than enough for deproteination by protease. Physicochemical analysis indicated that the enzyme assisted production of chitin seems appropriate to extract chitin, possibly retaining its native structure.
Resumo:
Regulatory, safety, and environmental issues have prompted the development of aqueousenzymatic extraction (AEE) for extracting components from oil-bearing materials. The emulsion resulting from AEE requires de-emulsification to separate the oil; when enzymes are used for this purpose, the method is known as aqueous enzymatic emulsion de-emulsification (AEED). In general, enzyme assisted oil extraction is known to yield oil having highly favourable characteristics. This review covers technological aspects of enzyme assisted oil extraction, and explores the quality characteristics of the oils obtained,focusing particularly on recent efforts undertaken to improve process economics by recovering and reusing enzymes.
Resumo:
Wheat Distillers’ Dried Grains with Solubles (DDGS) and in-process samples were used for protein extraction. Prolamins were the predominant protein components in the samples. The absence of extractable α- and γ-gliadins in DDGS indicated protein aggregation during the drum drying processing stage. Prolamin extraction was performed using 70% (v/v) ethanol or alkaline-ethanol solution in the presence of reducing agent. DDGS extracts had relatively low protein contents (14-44.9%, w/w), regardless of the condition applied. The wet solids were the most suitable raw material for protein extraction, with recovery yields of ~ 55% (w/w) and protein content of ~58% (w/w) in 70% (v/v) ethanol. Protein extracts from wet solids were significantly rich in glutamic acid and proline. Mass balance calculations demonstrated the high carbohydrate content (~ 50%, w/w) of solid residues. Overall, the feasibility of utilising in-process samples of DDGS for protein extraction with commercial potential was demonstrated.
Resumo:
Crude enzymes produced via solid state fermentation (SSF) using wheat milling by-products have been employed for both fermentation media production using flour-rich waste (FRW) streams and lysis of Rhodosporidium toruloides yeast cells. Filter sterilization of crude hydrolysates was more beneficial than heat sterilization regarding yeast growth and microbial oil production. The initial carbon to free amino nitrogen ratio of crude hydrolysates was optimized (80.2 g/g) in fed-batch cultures of R. toruloides leading to a total dry weight of 61.2 g/L with microbial oil content of 61.8 % (w/w). Employing a feeding strategy where the glucose concentration was maintained in the range of 12.2 – 17.6 g/L led to the highest productivity (0.32 g/L∙h). The crude enzymes produced by SSF were utilised for yeast cell treatment leading to simultaneous release of around 80% of total lipids in the broth and production of a hydrolysate suitable as yeast extract replacement.
Resumo:
Multispectral iris recognition uses information from multiple bands of the electromagnetic spectrum to better represent certain physiological characteristics of the iris texture and enhance obtained recognition accuracy. This paper addresses the questions of single versus cross spectral performance and compares score-level fusion accuracy for different feature types, combining different wavelengths to overcome limitations in less constrained recording environments. Further it is investigated whether Doddington's “goats” (users who are particularly difficult to recognize) in one spectrum also extend to other spectra. Focusing on the question of feature stability at different wavelengths, this work uses manual ground truth segmentation, avoiding bias by segmentation impact. Experiments on the public UTIRIS multispectral iris dataset using 4 feature extraction techniques reveal a significant enhancement when combining NIR + Red for 2-channel and NIR + Red + Blue for 3-channel fusion, across different feature types. Selective feature-level fusion is investigated and shown to improve overall and especially cross-spectral performance without increasing the overall length of the iris code.