967 resultados para odd-odd nuclei
Resumo:
Miocene to Quaternary sediments from the Oki Ridge (Site 798) and the Kita-Yamato Trough (Site 799) in the Japan Sea contain organic carbon ranging from about 0.6% in light-colored layers to almost 6% in dark layers. The organic matter consists of a variable mixture of marine and terrigenous contributions, the ratio of which is not correlated to the total organic carbon content. Marine organic particles clearly dominate in the deeper section of Hole 799B. The extractable bitumen is strongly dominated by long-chain alkenones from microalgae in the shallower sediments, whereas bishomohopanoic acid (C32) of eubacterial origin is the single most abundant compound in deeper samples. Normal alkanes and straight-chain carboxylic acids, both of which show a bimodal distribution with odd and even carbon-number predominance, respectively, are two other groups of compounds which are important constituents of the extracts. The deepest samples at Site 799 contain a considerable amount of short-chain components, which probably migrated upward from thermally more altered deeper sediments.
Resumo:
The thermal effects of three (one major and two minor) Miocene diabase intrusions on Cretaceous black shales from DSDP site 41-368 have been analyzed. A concentration gradient was observed, especially for the hydrocarbons, decreasing towards the major intrusion and between the three sills. The thermally-altered samples in the proximity of and between the sills contained elemental sulfur and an excess of thermally-derived pristane over phytane. whereas, the unaltered sediments contained no elemental sulfur, and more phytane than pristane. A maximum yield of the extractable hydrocarbons was observed at a depth of 7 m below the major sill. Two classes of molecular markers were present in this bitumen suite. The first was sesqui-, di- and triterpenoids and steranes. which could be correlated with both terrigenous and autochthonous sources. They were geologically mature and showed no significant changes due to the thermal stress. The second class was found in the altered samples, which contained only polynuclear aromatic hydrocarbons with low alkyl substitution and sulfur and oxygen heterocyclic aromatic compounds. These compounds were derived from pyrolytic reactions during the thermal event. Kerogen was isolated from all of these samples, but only traces of humic substances were present. The H/C, N/C, d13C, d34S and dD all exhibit the expected effects of thermal stress. The kerogen becomes more aromatized and richer in 13C, 34S and D in the proximity of and between the sills. Maturation trends were also measured by the vitrinite reflectance and electron spin resonance, where the thermal stress could be correlated with an elevated country rock temperature and an increased degree of aromaticity. The effects of in situ thermal stress on the organic-rich shales resulted in the generation and expulsion of petroliferous material from the vicinity of the sills.
Resumo:
Fifteen sediment samples were studied from five drill sites recovered by the Glomar Challenger on Legs I and IV in the Gulf of Mexico and western Atlantic. This study concentrated on compounds derived from biogenic precursors, namely: (1) hydrocarbons, (2) fatty acids, (3) pigments and (4) amino acids. Carbon isotope (dC13) data [values <(-26)?, relative to PDB], long-chain n-alkyl hydrocarbons (>>C27) with odd carbon numbered molecules dominating even carbon numbered species, and presence of perylene proved useful as possible indicators for terrigenous contributions to the organic matter in some samples. Apparently land-derived organic matter can be transported for distances over 1000 km into the ocean and their source still recognized. The study was primarily designed to investigate: (i) the sources of the organic matter present in the sediment, (ii) their stability with time of accumulation and (iii) the conditions necessary for in situ formation of new compounds.
Resumo:
Organic geochemical and petrological investigations were carried out on Cenomanian/Turonian black shales from three sample sites in the Tarfaya Basin (SW Morocco) to characterize the sedimentary organic matter. These black shales have a variable bulk and molecular geochemical composition reflecting changes in the quantity and quality of the organic matter. High TOC contents (up to 18wt%) and hydrogen indices between 400 and 800 (mgHC/gTOC) indicate hydrogen-rich organic matter (Type I-II kerogen) which qualifies these laminated black shale sequences as excellent oil-prone source rocks. Low Tmax values obtained from Rock-Eval pyrolysis (404-425 MC) confirm an immature to early mature level of thermal maturation. Organic petrological studies indicate that the kerogen is almost entirely composed of bituminite particles. These unstructured organic aggregates were most probably formed by intensive restructuring of labile biopolymers (lipids and/or carbohydrates), with the incorporation of sulphur into the kerogen during early diagenesis. Total lipid analyses performed after desulphurization of the total extract shows that the biomarkers mostly comprise short-chain n-alkanes (C16-C22) and long-chain (C25-C35) n-alkanes with no obvious odd-over-even predominance, together with steranes, hopanoids and acyclic isoprenoids. The presence of isorenieratane derivatives originating from green sulphur bacteria indicates that dissolved sulphide had reached the photic zone at shallow water depths (~100m) during times of deposition. These conditions probably favoured intensive sulphurization of the organic matter. Flash pyrolysis GC-MS analysis of the kerogen indicates the aliphatic nature of the bulk organic carbon. The vast majority of pyrolysis products are sulphur-containing components such as alkylthiophenes, alkenylthiophenes and alkybenzothiophenes. Abundant sulphurization of the Tarfaya Basin kerogen resulted from excess sulphide and metabolizable organic matter combined with a limited availability of iron during early diagenesis. The observed variability in the intensity of OM sulphurization may be attributed to sea level-driven fluctuations in the palaeoenvironment during sedimentation.
Resumo:
Selected core samples from the California Continental Borderland (Sites 467-469) were analyzed to evaluate the nature and composition of the lipids and kerogens in terms of their genetic origin and geological maturity. The lipids were of a multiple origin. On the basis of the homolog distributions of the n-alkanes and n-fatty acids, with the shape and magnitude of the unresolved branched and cyclic hydrocarbons, and the structural and stereochemical compositions of the molecular markers, these lipids were derived from primary autochthonous marine (microbial), from allochthonous terrigenous (higher plant wax), and from recycled (geologically mature organic matter) sources. The kerogens were composed of principally marine microbial detritus with a minor input of allochthonous terrestrial material. For the most part, the samples had undergone a thermal maturation according to a normal geothermal gradient, except in the proximity of intrusives. Such additional thermal stress was evident for the samples from Site 469 and to some extent for Site 467 at about a sub-bottom depth of 700 to 800 meters.
Resumo:
Analysis of molecular composition of alkanes in bottom sediments of the southern part of Dvina Bay (White Sea) in October 2001 revealed the following main peculiarities of hydrocarbon behavior in the estuary: dominating of high molecular C23-C45 compounds and irregular distribution of hydrocarbons in bottom sediments as a result of high sedimentation rate and active hydrodynamics in the studied area.