968 resultados para object-oriented modelling
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Industrial
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores Especialidade: Robótica e Manufactura Integrada
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertation submitted for obtaining the degree of Master in Environmental Engineering
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica, Especialidade em Engenharia Bioquímica
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Doutor em Ambiente
Resumo:
Nowadays, existing 3D scanning cameras and microscopes in the market use digital or discrete sensors, such as CCDs or CMOS for object detection applications. However, these combined systems are not fast enough for some application scenarios since they require large data processing resources and can be cumbersome. Thereby, there is a clear interest in exploring the possibilities and performances of analogue sensors such as arrays of position sensitive detectors with the final goal of integrating them in 3D scanning cameras or microscopes for object detection purposes. The work performed in this thesis deals with the implementation of prototype systems in order to explore the application of object detection using amorphous silicon position sensors of 32 and 128 lines which were produced in the clean room at CENIMAT-CEMOP. During the first phase of this work, the fabrication and the study of the static and dynamic specifications of the sensors as well as their conditioning in relation to the existing scientific and technological knowledge became a starting point. Subsequently, relevant data acquisition and suitable signal processing electronics were assembled. Various prototypes were developed for the 32 and 128 array PSD sensors. Appropriate optical solutions were integrated to work together with the constructed prototypes, allowing the required experiments to be carried out and allowing the achievement of the results presented in this thesis. All control, data acquisition and 3D rendering platform software was implemented for the existing systems. All these components were combined together to form several integrated systems for the 32 and 128 line PSD 3D sensors. The performance of the 32 PSD array sensor and system was evaluated for machine vision applications such as for example 3D object rendering as well as for microscopy applications such as for example micro object movement detection. Trials were also performed involving the 128 array PSD sensor systems. Sensor channel non-linearities of approximately 4 to 7% were obtained. Overall results obtained show the possibility of using a linear array of 32/128 1D line sensors based on the amorphous silicon technology to render 3D profiles of objects. The system and setup presented allows 3D rendering at high speeds and at high frame rates. The minimum detail or gap that can be detected by the sensor system is approximately 350 μm when using this current setup. It is also possible to render an object in 3D within a scanning angle range of 15º to 85º and identify its real height as a function of the scanning angle and the image displacement distance on the sensor. Simple and not so simple objects, such as a rubber and a plastic fork, can be rendered in 3D properly and accurately also at high resolution, using this sensor and system platform. The nip structure sensor system can detect primary and even derived colors of objects by a proper adjustment of the integration time of the system and by combining white, red, green and blue (RGB) light sources. A mean colorimetric error of 25.7 was obtained. It is also possible to detect the movement of micrometer objects using the 32 PSD sensor system. This kind of setup offers the possibility to detect if a micro object is moving, what are its dimensions and what is its position in two dimensions, even at high speeds. Results show a non-linearity of about 3% and a spatial resolution of < 2µm.
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
This work aims to identify and rank a set of Lean and Green practices and supply chain performance measures on which managers should focus to achieve competitiveness and improve the performance of automotive supply chains. The identification of the contextual relationships among the suggested practices and measures, was performed through literature review. Their ranking was done by interviews with professionals from the automotive industry and academics with wide knowledge on the subject. The methodology of interpretive structural modelling (ISM) is a useful methodology to identify inter relationships among Lean and Green practices and supply chain performance measures and to support the evaluation of automotive supply chain performance. Using the ISM methodology, the variables under study were clustered according to their driving power and dependence power. The ISM methodology was proposed to be used in this work. The model intends to provide a better understanding of the variables that have more influence (driving variables), the others and those which are most influenced (dependent variables) by others. The information provided by this model is strategic for managers who can use it to identify which variables they should focus on in order to have competitive supply chains.
Resumo:
Transport is an essential sector in modern societies. It connects economic sectors and industries. Next to its contribution to economic development and social interconnection, it also causes adverse impacts on the environment and results in health hazards. Transport is a major source of ground air pollution, especially in urban areas, and therefore contributing to the health problems, such as cardiovascular and respiratory diseases, cancer, and physical injuries. This thesis presents the results of a health risk assessment that quantifies the mortality and the diseases associated with particulate matter pollution resulting from urban road transport in Hai Phong City, Vietnam. The focus is on the integration of modelling and GIS approaches in the exposure analysis to increase the accuracy of the assessment and to produce timely and consistent assessment results. The modelling was done to estimate traffic conditions and concentrations of particulate matters based on geo-references data. A simplified health risk assessment was also done for Ha Noi based on monitoring data that allows a comparison of the results between the two cases. The results of the case studies show that health risk assessment based on modelling data can provide a much more detail results and allows assessing health impacts of different mobility development options at micro level. The use of modeling and GIS as a common platform for the integration of different assessments (environmental, health, socio-economic, etc.) provides various strengths, especially in capitalising on the available data stored in different units and forms and allows handling large amount of data. The use of models and GIS in a health risk assessment, from a decision making point of view, can reduce the processing/waiting time while providing a view at different scales: from micro scale (sections of a city) to a macro scale. It also helps visualising the links between air quality and health outcomes which is useful discussing different development options. However, a number of improvements can be made to further advance the integration. An improved integration programme of the data will facilitate the application of integrated models in policy-making. Data on mobility survey, environmental monitoring and measuring must be standardised and legalised. Various traffic models, together with emission and dispersion models, should be tested and more attention should be given to their uncertainty and sensitivity
Resumo:
In the last few years, we have observed an exponential increasing of the information systems, and parking information is one more example of them. The needs of obtaining reliable and updated information of parking slots availability are very important in the goal of traffic reduction. Also parking slot prediction is a new topic that has already started to be applied. San Francisco in America and Santander in Spain are examples of such projects carried out to obtain this kind of information. The aim of this thesis is the study and evaluation of methodologies for parking slot prediction and the integration in a web application, where all kind of users will be able to know the current parking status and also future status according to parking model predictions. The source of the data is ancillary in this work but it needs to be understood anyway to understand the parking behaviour. Actually, there are many modelling techniques used for this purpose such as time series analysis, decision trees, neural networks and clustering. In this work, the author explains the best techniques at this work, analyzes the result and points out the advantages and disadvantages of each one. The model will learn the periodic and seasonal patterns of the parking status behaviour, and with this knowledge it can predict future status values given a date. The data used comes from the Smart Park Ontinyent and it is about parking occupancy status together with timestamps and it is stored in a database. After data acquisition, data analysis and pre-processing was needed for model implementations. The first test done was with the boosting ensemble classifier, employed over a set of decision trees, created with C5.0 algorithm from a set of training samples, to assign a prediction value to each object. In addition to the predictions, this work has got measurements error that indicates the reliability of the outcome predictions being correct. The second test was done using the function fitting seasonal exponential smoothing tbats model. Finally as the last test, it has been tried a model that is actually a combination of the previous two models, just to see the result of this combination. The results were quite good for all of them, having error averages of 6.2, 6.6 and 5.4 in vacancies predictions for the three models respectively. This means from a parking of 47 places a 10% average error in parking slot predictions. This result could be even better with longer data available. In order to make this kind of information visible and reachable from everyone having a device with internet connection, a web application was made for this purpose. Beside the data displaying, this application also offers different functions to improve the task of searching for parking. The new functions, apart from parking prediction, were: - Park distances from user location. It provides all the distances to user current location to the different parks in the city. - Geocoding. The service for matching a literal description or an address to a concrete location. - Geolocation. The service for positioning the user. - Parking list panel. This is not a service neither a function, is just a better visualization and better handling of the information.
Resumo:
Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/64337/2009 ; projects PTDC/ECM/70652/2006, PTDC/ECM/117660/2010 and RECI/ECM-HID/0371/2012