930 resultados para nonlinear dimensionality reduction
Resumo:
In this paper, we develop and analyze C(0) penalty methods for the fully nonlinear Monge-Ampere equation det(D(2)u) = f in two dimensions. The key idea in designing our methods is to build discretizations such that the resulting discrete linearizations are symmetric, stable, and consistent with the continuous linearization. We are then able to show the well-posedness of the penalty method as well as quasi-optimal error estimates using the Banach fixed-point theorem as our main tool. Numerical experiments are presented which support the theoretical results.
Nonlinear Suboptimal Guidance with Impact Angle Constraint for Slow Moving Targets in 1-D Using MPSP
Resumo:
Using a recently developed method named as model predictive static programming (MPSP), a nonlinear suboptimal guidance law for a constant speed missile against a slow moving target with impact angle constraint is proposed. In this paper MPSP technique leads to a closed form solution of the latax history update for the given problem. Guidance command is the latax,which is normal to the missile velocity and the terminal constraints are miss distance and impact angle. The new guidance law is validated by considering the nonlinear kinematics with both lag-free and first order autopilot delay.
Active Vibration Suppression of One-dimensional Nonlinear Structures Using Optimal Dynamic Inversion
Resumo:
A flexible robot arm can be modeled as an Euler-Bernoulli beam which are infinite degrees of freedom (DOF) system. Proper control is needed to track the desired motion of a robotic arm. The infinite number of DOF of beams are reduced to finite number for controller implementation, which brings in error (due to their distributed nature). Therefore, to represent reality better distributed parameter systems (DPS) should be controlled using the systems partial differential equation (PDE) directly. In this paper, we propose to use a recently developed optimal dynamic inversion technique to design a controller to suppress nonlinear vibration of a beam. The method used in this paper determines control forces directly from the PDE model of the system. The formulation has better practical significance, because it leads to a closed form solution of the controller (hence avoids computational issues).
Resumo:
The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO(2) is discussed here. TiO(2) nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO(2) (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO(2) nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g(-1)) for TiO(2) nanotube and nanosheet were 355 mAh g(-1) and 225 mAhg(-1), respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g(-1) for TiO(2) nanotubes to 96 mAh g(-1) and 57 mAhg(-1) respectively for Ag and carbon modified TiO(2) nanotubes. The homogeneously coated amorphous carbon over TiO(2) renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO(2) due to efficient hopping of electrons. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The effect of variation in the switching instant of the output switch of the pulser circuit used in energizing an NEMP simulator on the voltage fed to the simulator and hence the electric field within the working volume of the simulator has been studied. Depending upon the instant at which the output switch closes, the amplitude and the wave shape of the voltage that is fed to the illuminator varies. This wave shape of the output voltage from the pulser circuit determines the shape and characteristics of the electric field within the working volume of the simulator. To study the effect of variation in the switching instant on the vertical electric field within the working volume, the vertical electric field has been computed in time and frequency domains. For certain switching instants, the electric field shows a sharp reduction in its amplitude after the peak which is called the notch. The presence of notch results in the test object not getting illuminated with all the frequencies of interest. The notch has been successfully reduced by suitably modifying the pulser circuit.