904 resultados para nonionic surfactant
Resumo:
Estudos foram conduzidos com o objetivo de avaliar os depósitos de gotas pulverizadas através de dois tipos de pontas sobre as faces adaxial e abaxial de folhas de Eichhornia crassipes dispostas em diferentes ângulos. No primeiro estudo, os tratamentos foram dispostos no esquema fatorial 2x4x7: dois tipos de pontas (TX12 e XR11002VS), quatro ângulos verticais (0º, 30º, 60º e 90º) e sete ângulos horizontais (0º, 15º, 30º, 45º, 60º, 75º e 90º). No ângulo vertical de 90º a lâmina foliar foi posicionada paralelamente ao sentido de deslocamento do jato de pulverização; e no ângulo horizontal de 90º a folha foi posicionada perpendicularmente ao plano do solo. Como traçadores, foram utilizadas soluções de 1.000 ppm do corante Azul FDC-1 e 3.500 ppm do corante Amarelo Tartrasina para as pontas tipo leque e cone, respectivamente. No segundo estudo, os tratamentos foram dispostos no esquema fatorial 2x2x3: dois tipos de pontas (TX12 e XR11002VS), dois tipos de calda (com e sem Aterbane BR a 0,5%) e três ângulos horizontais (0º, 45º e 90º). Adotou-se o ângulo vertical de 90º como padrão para todos os tratamentos. Soluções de 1.000 ppm do corante Azul FDC-1 e 3.500 ppm do corante Amarelo Tartrasina foram utilizadas como traçadores para a calda com e sem surfatante, respectivamente. Os resultados do primeiro estudo revelaram que os depósitos observados em toda a folha e na face adaxial das lâminas foliares de aguapé diminuíram à medida que se aumentou a angulação vertical, independentemente da ponta utilizada. Os menores depósitos sempre estiveram relacionados ao ângulo vertical de 90º, independentemente do ângulo horizontal utilizado. Não foi detectado nenhum depósito na face abaxial das folhas de aguapé em todas as combinações dos fatores estudados. No segundo estudo também foram observados os mesmos decréscimos no volume de calda depositado em toda a folha e na face adaxial à medida que se aumentou a angulação vertical das lâminas foliares. As duas pontas proporcionaram depósitos nulos na face abaxial quando o surfatante não foi utilizado; entretanto, a adição do surfatante à calda incrementou significativamente os depósitos nesta face da folha do aguapé.
Resumo:
As espécies de plantas aquáticas podem causar inúmeros inconvenientes ao uso múltiplo da água quando elas se desenvolvem desordenadamente. Assim, o objetivo deste trabalho foi avaliar a eficiência de diferentes herbicidas no controle químico de plantas de Alternanthera philoxeroides, Enhydra anagallis e Pycreus decumbens em caixa-d'água. Quando as plantas atingiram o seu pleno desenvolvimento (antes do florescimento), foram aplicados, nas espécies Alternanthera philoxeroides e Enhydra anagallis, os herbicidas: 2,4-D amina (U-46 D FLUID 720) a 2.880 g e.a. ha-1; diquat (REWARD 240) a 480 g i.a. ha-1; imazapyr (ARSENAL 250) a 500 e 750 g e.a. ha-1; glyphosate (RODEO 480) a 3.360 g e.a. ha-1 com e sem o surfatante Aterbane BR (0,5% v v-1); glyphosate + diquat (3.360 + 480 g i./e.a. ha-1 ); glyphosate + 2,4-D (3.360 + 2.880 g e.a. ha-1); e diquat + 2,4-D (480 + 2.880 g i./e.a. ha-1), além de uma testemunha sem aplicação de herbicida. Para a espécie Pycreus decumbens foram aplicados: 2,4-D amina (U-46 D FLUID 720) a 2.880 g e.a. ha-1; diquat (REWARD 240) a 480 g i.a. ha-1; propanil (STAM 480) a 2.880 g i.a. ha-1; glyphosate (RODEO 480) a 3.360 g e.a. ha-1 mais o surfatante Aterbane BR (0,5% v v-1); glyphosate + propanil (3.360 + 2.880 g i./e.a. ha-1); glyphosate + diquat (3.360 + 480 g i./e.a. ha-1); glyphosate + 2,4-D (3.360 + 2.880 g e.a. ha-1); propanil + 2,4-D (2.880 + 2.880 g i./e.a. ha-1); e diquat + 2,4-D (480 + 2.880 g i./e.a. ha-1), além de uma testemunha sem aplicação de herbicida. Os herbicidas foram aplicados com um pulverizador estacionário, pressurizado a ar comprimido e equipado com um reservatório de 2 litros, pontas Teejet XR11002VS, com um consumo de calda de 200 L ha-1. As avaliações de controle das plantas daninhas foram visuais, por meio de uma escala de percentual de notas, além de se avaliar a massa seca das plantas. Verificou-se que o controle químico apresenta-se como uma boa alternativa de manejo para as espécies A. philoxeroides, E. anagallis e P. decumbens, e a mistura de herbicidas pode aumentar a eficiência de controle. E. anagallis apresentou alta sensibilidade à ação dos herbicidas; entretanto, as espécies A. philoxeroides e P. decumbens evidenciaram alta capacidade de regeneração, principalmente quando se utilizaram herbicidas de ação de contato.
Efeito de diferentes concentrações de aterbane na deposição de calda em plantas de Pistia stratiotes
Resumo:
O objetivo deste trabalho foi avaliar o efeito do adjuvante Aterbane na deposição de calda de pulverização, aplicada sobre plantas de Pistia stratiotes. Os tratamentos foram constituídos por três concentrações do adjuvante Aterbane (0, 0,25 e 0,5%), usado na elaboração da calda de pulverização. As caldas foram preparadas utilizando-se o corante FDC-1 a 1.500 ppm como traçante. O delineamento experimental adotado foi o inteiramente casualizado com 30 repetições, sendo cada repetição constituída por uma planta com seis folhas. A aplicação foi feita com um pulverizador estacionário, à pressão constante de 2 bars, com consumo de calda de 200 L ha-1. Foram utilizadas pontas de jato plano Teejet 11002vs. Os resultados demonstraram que, quantitativamente, o Aterbane não promoveu nenhum efeito na deposição da calda, entretanto, qualitativamente, quanto maior a concentração utilizada maior foi a uniformidade de deposição de calda.
Resumo:
O objetivo do estudo foi avaliar a influência da presença de cinco íons em uma calda de pulverização contendo o surfatante Aterbane. A tensão superficial foi analisada por meio da medição da massa de um conjunto de 25 gotas, com quatro repetições constituindo um tratamento. O trabalho foi dividido em duas etapas. Na primeira, os tratamentos foram combinados em esquema fatorial 9x5x2, sendo nove concentrações do surfatante Aterbane (0,01; 0,025; 0,05; 0,1; 0,2; 0,5; 1; 2; e 3%), cinco íons (Mg++, Ca++, Fe+++, Cu+++ e Zn+++) e duas concentrações desses elementos (10 e 100 ppm). Na segunda etapa, os tratamentos foram combinados em esquema fatorial 5x5x1, utilizandose os mesmos cinco elementos (Mg++, Ca++, Fe+++, Cu+++ e Zn+++), em cinco concentrações (1, 5, 20, 50 e 200 ppm), com apenas uma concentração do surfatante Aterbane (0,025%). Outros nove tratamentos permitiram avaliar as tensões superficiais das concentrações do surfatante (0,01; 0,025; 0,05; 0,1; 0,2; 0,5; 1; 2; e 3%) sem a adição dos íons. Os resultados mostraram que houve interferência dos íons sobre as soluções, já que, com exceção do Fe+++ (na concentração de 10 e 100 ppm) e do Cu+++ (na concentração de 100 ppm), todos os íons reduziram a tensão mínima alcançada e aumentaram a eficiência do surfatante, implicando benefícios à ação do surfatante e sobre as características de possíveis soluções de aplicação. Todos os íons avaliados promoveram reduções nas tensões superficiais de soluções do surfatante na concentração de 0,025%.
Resumo:
The development of new fuels is an important field of scientific and technological activities, since much of the energy consumed in the world is obtained from oil, coal and natural gas, and these sources are limited and not renewable. Recently it has assessed the employment of microemulsions as an alternative for obtaining fuel isotropic between phases originally not miscible. Among many advantages, emphasizes the application of substances that provide the reduction of levels of emissions compared to fossil fuels. Thus, this work was a study of various microemulsified systems, aiming to check the performance of the winsor regions front of the use of surfactants: RENEX 18 → 150, UNITOL L-60 → L-100 and AMIDA 60, together with structure of esters from soybean and castor bean oils. From the results it were chosen four systems to physico-chemical analyzes: System I RENEX 60, Soil bean oil, methylic ester (EMOS) and water; System II RENEX 60/AMIDA 60, EMOS and water; System III RENEX 70, mamona oil methylic ester (EMOM) and water and System IV RENEX 95, EMOM and water. The tests of physico-chemical characterization and study of temperature increase were done with nine points with different compositions in a way to include the interest area (microemulsion W/O). After this study, was conducted a modeling to predict the viscosity, the property is more varied as function of compositions systems changes. The best results were the systems II and IV with a temperature stability above 60°C. The system I had its physico-chemical characterization very similar to a fossil fuel. The system II was the best one due to its corrosivity be stable. In the modeling the four systems had shown good, with an error that varied between 5 and 18%, showing to be possible the viscosity prediction from the composition of the system. The effects the microemulsion and the engine´s performance with the microemulsion were also avaliated. The tests were performed in a cycle-diesel engine. The potency and consumption were analysed. Results show a slight increase the rendiment fuel compared with the conventional as well as a decrease in specific consumption
Resumo:
The formation of paraffin deposits is common in the petroleum industry during production, transport and treatment stages. It happens due to modifications in the thermodynamic variables that alter the solubility of alkanes fractions present in petroleum. The deposition of paraffin can provoke significant and growing petroleum losses, arriving to block the flow, hindering to the production. This process is associated with the phases equilibrium L-S and the stages and nucleation, growth and agglomeration the crystals. That process is function of petroleum intrinsic characteristics and temperature and pressure variations, during production. Several preventive and corrective methods are used to control the paraffin crystallization, such as: use of chemical inhibitors, hot solvents injection, use of termochemistry reactions, and mechanical removal. But for offshore exploration this expensive problem needs more investigation. Many studies have been carried through Wax Appearance Temperature (WAT) of paraffin; therefore the formed crystals are responsible for the modification of the reologics properties of the oil, causing a lot off operational problems. From the determination of the WAT of a system it is possible to affirm if oil presents or not trend to the formation of organic deposits, making possible to foresee and to prevent problems of wax crystallization. The solvent n-paraffin has been widely used as fluid of perforation, raising the production costs when it is used in the removal paraffin deposits, needing an operational substitute. This study aims to determine the WAT of paraffin and the interference off additives in its reduction, being developed system paraffin/solvent/surfactant that propitiates the wax solubilization. Crystallization temperatures in varied paraffin concentrations and different solvents were established in the first stage of the experiments. In the second stage, using the methodology of variation of the photoelectric signal had been determined the temperature of crystallization of the systems and evaluated the interferences of additives to reduction of the WAT. The experimental results are expressed in function of the variations of the photoelectric signals during controlled cooling, innovating and validating this new methodology to determine WAT, relatively simple with relation the other applied that involve specific equipments and of high cost. Through the curves you differentiate of the results had been also identified to the critical stages of growth and agglomeration of the crystals that represent to the saturation of the system, indicating difficulties of flow due to the increase of the density
Resumo:
Petroleum can be associated or not with natural gas, but in both cases water is always present in its formation. The presence of water causes several problems, such as the difficulty of removing the petroleum from the reservoir rock and the formation of waterin-oil and oil-in-water emulsions. The produced water causes environmental problems, which should be solved to reduce the effect of petroleum industry in the environment. The main objective of this work is to remove simultaneously from the produced water the dispersed petroleum and dissolved metals. The process is made possible through the use of anionic surfactants that with its hydrophilic heads interacts with ionized metals and with its lipophilic tails interacts with the oil. The studied metals were: calcium, magnesium, barium, and cadmium. The surfactants used in this research were derived from: soy oil, sunflower oil, coconut oil, and a soap obtained from a mixture of 5wt.% coconut oil and 95wt.% animal fat. It was used a sample of produced water from Terminal de São Sebastião, São Paulo. As the concentration of the studied metals in produced water presented values close to 300 mg/L, it was decided to use this concentration as reference for the development of this research. Molecular absorption and atomic absorption spectroscopy were used to determine petroleum and metals concentrations in the water sample, respectively. A constant pressure filtration system was used to promote the separation of solid and liquid phases. To represent the behavior of the studied systems it was developed an equilibrium model and a mathematical one. The obtained results showed that all used surfactants presented similar behavior with relation to metals extraction, being selected the surfactant derived from soy oil for this purpose. The values of the partition coefficients between the solid and liquid phases " D " for the studied metals varied from 0.2 to 1.1, while the coefficients for equilibrium model " K " varied from 0.0002 and 0.0009. The removal percentile for oil with all metals associated was near 100%, showing the efficiency of the process
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitable surfactant was the EO 7 due to the lower reagent onsumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
With the increase of asphalt milling services was also a significant increase in recycling services pavements. The techniques used today are basically physical processes in which the milled material is incorporated into new asphalt mixtures or executed on site, with the addition of virgin asphalt and rejuvenating agent. In this paper seeks to analyze the efficiency of extraction of CAP (Petroleum Asphalt Cement) mixtures from asphalt milling, using commercial solvents and microemulsions. The solvents were evaluated for their ability to solubilize asphalt using an extractor reflux-type apparatus. Pseudoternary diagrams were developed for the preparation of microemulsion O/W surfactant using a low-cost coconut oil saponified (OCS). Microemulsions were used to extract the CAP of asphalt through physicochemical process cold. Analysis was performed concentration of CAP in solution by spectroscopy. The data provided in the analysis of concentration by the absorbance of the solution as the basis for calculating the percentage of extraction and the mass flow of the CAP in the solution. The results showed that microemulsions prepared with low concentration of kerosene and butanol/OCS binary has high extraction power of CAP and its efficiency was higher than pure kerosene, reaching 95% rate of extraction
Resumo:
The constant search for biodegradable materials for applications in several fields shows that carnauba wax can be a viable alternative in the manufacturing of biolubricants. Carnauba wax is the unique among the natural waxes to have a combination of properties of great importance. In previous studies it was verified the presence of metals in wax composition that can harm the oxidative stability of lubricants. Considering these factors, it was decided to develop a research to evaluate iron removal from carnauba wax, using microemulsion systems (Me) and perform the optimization of parameters, such as: extraction pH, temperature, extraction time, among others. Iron concentration was determined by atomic absorption and, to perform this analysis, sample digestion in microwave oven was used, showing that this process was very efficient. It was performed some analysis in order to characterize the wax sample, such as: attenuated total reflectance infrared spectroscopy (ATR-IR), thermogravimetry (TG), differential scanning calorimetry (DSC), energy dispersive X-ray fluorescence (EDXRF), scanning electron microscopy (SEM) and melting point (FP). The microemulsion systems were composed by: coconut oil as surfactant, n-butanol as cosurfactant, kerosene and/or heptanes as oil phase, distilled water as water phase. The pH chosen for this study was 4.5 and the metal extraction was performed in finite experiments. To evaluate Me extraction it was performed a factorial design for systems with heptane and kerosene as oil phase, also investigating the influence of temperature time and wax/Me ratio, that showed an statistically significant answer for iron extraction at 95% confidence level. The best result was obtained at 60°C, 10 hours contact time and 1: 10 wax/Me ratio, in both systems with kerosene and heptanes as oil phase. The best extraction occurred with kerosene as oil phase, with 54% iron removal
Resumo:
The treatment of oil produced water and its implications are continually under investigation and several questions are related to this subject. In the Northeast Region Brazil, the onshore reservoirs are, in its majority, mature oil fields with high production of water. As this oil produced water has high levels of oil, it cannot be directly discarded into the environment because it represents a risk for contamination of soil, water, and groundwater, or even may cause harm to living bodies. Currently, polyelectrolytes that promote the coalescence of the oil droplets are used to remove the dispersed oil phase, enhancing the effectiveness of the flotation process. The non-biodegradability and high cost of polyelectrolytes are limiting factors for its application. On this context, it is necessary to develop studies for the search of more environmentally friendly products to apply in the flotation process. In this work it is proposed the modeling of the flotation process, in a glass column, using surfactants derived from vegetal oils to replace the polyelectrolytes, as well as to obtain a model that represents the experimental data. In addition, it was made a comparative study between the models described in the literature and the one developed in this research. The obtained results showed that the developed model presented high correlation coefficients when fitting the experimental data (R2 > 0.98), thus proving its efficiency in modeling the experimental data.
Resumo:
Copper is one of the most used metals in platingprocesses of galvanic industries. The presence of copper, a heavy metal, in galvanic effluents is harmful to the environment.The main objective of this researchwas the removal ofcopperfromgalvanic effluents, using for this purpose anionic surfactants. The removal process is based on the interaction between the polar head group of the anionic surfactant and the divalent copper in solution. The surfactants used in this study were derived from soybean oil (OSS), coconut oil (OCS), and sunflower oil (OGS). It was used a copper synthetic solution (280 ppm Cu+2) simulating the rinse water from a copper acid bath of a galvanic industry. It were developed 23and 32 factorial designs to evaluate the parameters that have influence in theremoval process. For each surfactant (OSS, OCS, and OGS), the independent variables evaluated were: surfactant concentration (1.25 to 3.75 g/L), pH (5 to 9) and the presence of an anionic polymer (0 to 0.0125 g/L).From the results obtained in the 23 factorial design and in the calculus for estimatingthe stoichiometric relationship between surfactants and copper in solution, it were developed new experimental tests, varying surfactant concentration in the range of 1.25 to 6.8 g/L (32 factorial design).The results obtained in the experimental designs were subjected to statistical evaluations to obtain Pareto charts and mathematical modelsfor Copper removal efficiency (%). The statistical evaluation of the 23 and 32factorial designs, using saponifiedcoconut oil (OCS), presented the mathematical model that best described the copper removal process.It can be concluded that OCS was the most efficient anionic surfactant, removing 100% of the copper present in the synthetic galvanic solution
Resumo:
O presente trabalho teve como objetivo comparar a eficiência de formulações de adubos foliares quelatizados na absorção dos micronutrientes boro, manganês e zinco, com a aplicação convencional de sais em plantas de laranjeira Pera (Citrus sinensis (L.) Osbeck). Para tanto foi conduzido experimento nas dependências do Departamento de Ciência do Solo da Faculdade de Ciências Agronômicas UNESP/Campus de Botucatu, Estado de São Paulo. Utilizaram-se plantas de laranjeira Pera (Citrus sinensis (L.) Osbeck) enxertadas sobre limoeiro Cravo (Citrus limonia Osbeck), com 2 anos de idade, plantadas em caixas de 250 litros. Os adubos foliares utilizados foram: Grex Citros na dose de 1,0 mL L-1; Copas citros 2,0 mL L-1; Plantin Citros 1,0 mL L-1; Citrolino 2,0 mL L-1; Fertamin Citros 1,75 mL L-1; Yogen Citros 2,0 mL L-1; MS-2 1,0 mL L-1; Sais, Sais + 1,0 g L-1 de KCl e Sais substituindo o ZnSO4 pelo ZnCl2. O volume de aplicação, foi de 1 litro de calda planta-1. em todos os tratamentos adicionou-se o espalhante adesivo do grupo químico dos alquifenoletoxilados a 0,03%. A amostragem das folhas foi realizada 30 dias após a aplicação dos tratamentos, coletando-se a 3a ou 4a folha de ramos vegetativos no início do florescimento, dos 4 quadrantes, localizados na região mediana da planta, totalizando 10 folhas por planta. A aplicação foliar de micronutrientes, favoreceu a absorção e resultou no aumento do teor foliar de Mn e Zn mas não de B, sendo que a presença de cloreto aumentou os teores de Zn na folhas de laranjeira Pera , proporcionando maior absorção do que o sulfato e sulfato adicionado ao cloreto de potássio. Os resultados mostram, também, que os produtos quelatizados Yogen e MS-2, para as condições deste estudo, não foram eficientes como fontes fornecedoras de Mn.
Resumo:
Petroleum exists in the nature in certain underground formations where it is adsorbed into the rocks pores. For the conventional recovery methods usually only 30% of the oil is extracted and this can be credited, basically, to three aspects: high viscosity of the oil, geology of the formation and high interfacial tensions between the reservoir s fluids. The enhanced recovery methods use the injection of a fluid or fluids mixture in a reservoir to act in points where the conventional process didn't reach the recovery rates. Microemulsion flooding, considered an enhanced method, has the purpose to desorb the oil from the rock formation and to attain an efficient displacement of the oil emulsion. With this in mind, this work was accomplished with two main objectives: the study of the parameters effect that influence a microemulsified system (surfactant and cosurfactant types, C/S rate and salinity) and the evaluation of displacement efficiency with the microemulsions that showed stability in the rich aqueous area. For the analyzed parameters it was chose the microemulsions composition used in the recovery stage: 25% water, 5% kerosene, 46.7% of butanol as cosurfactant and 23.3% of BC or SCO cosurfactant. The core plugs of Assu and Botucatu sandstones were appraised in porosity and permeability tests and then submitted to the steps of saturation with seawater and oil, conventional recovery with water and enhanced recovery with the selected microemulsions. The Botucatu sandstone presented better recovery parameters, and the microemulsion composed with BS surfactant had larger recovery efficiency (26.88%)
Resumo:
Naphthenic lubricating oils are used in transformers with the purpose of promoting electrical insulation and dissipating heat. The working temperature range of these oils typically lies between 60°C and 90°C and their useful life is 40 years in average. In that temperature range, the oils are decomposed during operation, whereby a small fraction of polar compounds are formed. The presence of these compounds may induce failure and loss of physical, chemical and electrical properties of the oil, thus impairing the transformer operation. By removing these contaminants, one allows the oxidized insulating oil to be reused without damaging the equipment. In view of this, an investigation on the use of surfactants and microemulsions as extracting agents, and modified diatomite as adsorbent, has been proprosed in this work aiming to remove polar substances detected in oxidized transformer oils. The extraction was carried out by a simple-contact technique at room temperature. The system under examination was stirred for about 10 minutes, after which it was allowed to settle at 25°C until complete phase separation. In another experimental approach, adsorption equilibrium data were obtained by using a batch system operating at temperatures of 60, 80 and 100°C. Analytical techniques involving determination of the Total Acidity Number (TAN) and infrared spectrophotometry have been employed when monitoring the decomposition and recovery processes of the oils. The acquired results indicated that the microemulsion extraction system comprising Triton® X114 as surfactant proved to be more effective in removing polar compounds, with a decrease in TAN index from 0.19 to 0.01 mg KOH/g, which is consistent with the limits established for new transformer oils (maximal TAN = 0.03 mg KOH/g). In the adsorption studies, the best adsorption capacity values were as high as 0.1606 meq.g/g during conventional adsoprtion procedures using natural bauxite, and as high as 0.016 meq.g/g for the system diatomite/Tensiofix® 8426. Comparatively in this case, a negative effect could be observed on the adsorption phenomenon due to microemulsion impregnation on the surface of the diatomite