989 resultados para nitrogen biological fixation
Resumo:
The clonal structure of the Colombian strain of Trypanosoma cruzi, biodeme Type III and zymodeme 1, was analyzed in order to characterize its populations and to establish its homogeneity or heterogeneity. Seven isolated clones presented the basic characteristics of Biodeme Type III, with the same patterns of parasitemic curves, tissue tropism to skeletal muscle and myocardium, high pathogenicity with extensive necrotic-inflammatory lesions from the 20th to 30th day of infection. The parental strain and its clones C1, C3, C4 and C6, determined the higher levels of parasitemia, 20 to 30 days of infection, with high mortality rate up to 30 days (79 to 100%); clones C2, C5 and C7 presented lower levels of parasitemia, with low mortality rates (7.6 to 23%). Isoenzymic patterns, characteristic of zymodeme 1, (Z1) were similar for the parental strain and its seven clones. Results point to a phenotypic homogeneity of the clones isolated from the Colombian strain and suggest the predominance of a principal clone, responsible for the biological behavior of the parental strain and clones.
Introdução, estabelecimento e adaptação de Bradirrizóbios simbiontes da soja em a solos brasileiros.
Resumo:
Rizóbios microssimbiontes da soja; Introdução de estirpes nos solos brasileiros; Adaptação das estirpes de B. japonicum / B. elkanii aos solos brasileiros; Competitividade das estirpes de B elkanii SEMIA 587 e 29 W; Competitividade das estirpes do sorogrupo SEMIA 566 de B. japonicum; Variabilidade nas estirpes de Bradyrhizobium após a introdução nos solos brasileiros; Transferência horizontal de genes entre estirpes inoculantes e rizóbios indígenas ou naturalizados nos solos brasileiros.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
O Azoto (N): da ciência para a sociedade é um projecto de comunicação de ciência que tem por objecNvo consciencializar os jovens para as ameaças que o azoto (N) em excesso traz para a humanidade. Pode ser dividido em duas partes. Uma, de invesNgação, sobre a análise de resultados de uma consulta pública realizada entre professores, usando o método qualitaNvo do focus group, para compreender a sua sensibilidade e propostas de solução para minimizar o excesso de N no ambiente. Os resultados obNdos foram instrumentais para o desenvolvimento da segunda parte. Esta segunda parte é uma proposta de projecto a submeter ao Horizon 2020, no âm-‐ bito da “Science with and for Society “. Nela se propõe uma abordagem educaNva trans-‐disciplinar, conseguida através da interacção entre docentes do secundário, e do ensino superior, associação de pais e organizações cívicas não governamentais, com vista à consciencialização dos jovens para as ameaças do N em excesso no meio ambiente, fazendo o enquadramento cien@fico e fornecendo abordagens tecnológi-‐ cas. A inovação desta proposta baseia-‐se: (i) no acompanhamento e desenvolvimen-‐ to profissional dos docentes do secundário, (ii) na moNvação dos estudantes a de-‐ senvolver o seu próprio estudo e pesquisa com a tutoria dos docentes, da escola e do ensino superior, e (iii) no desenvolvimento de capacidades de comunicação dos jo-‐ vens para exercer uma cidadania acNva em prol da minimização das ameaças do N.
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
Water is a limited resource for which demand is growing. Contaminated water from inadequate wastewater treatment provides one of the greatest health challenges as it restricts development and increases poverty in emerging and developing countries. Therefore, the connection between wastewater and human health is linked to access to sanitation and to human waste disposal. Adequate sanitation is expected to create a barrier between disposed human excreta and sources of drinking water. Different approaches to wastewater management are required for different geographical regions and different stages of economic governance depending on the capacity to manage wastewater. Effective wastewater management can contribute to overcome the challenges of water scarcity. Separate collection of human urine at its source is one promising approach that strongly reduces the economic and load demands on wastewater treatment plants (WWTP). Treatment of source-separated urine appears as a sanitation system that is affordable, produces a valuable fertiliser, reduces pollution of water resources and promotes health. However, the technical realisation of urine separation still faces challenges. Biological hydrolysis of urea causes a strong increase of ammonia and pH. Under these conditions ammonia volatilises which can cause odour problems and significant nitrogen losses. The above problems can be avoided by urine stabilisation. Biological nitrification is a suitable process for stabilisation of urine. Urine is a highly concentrated nutrient solution which can lead to strong inhibition effects during bacterial nitrification. This can further lead to process instabilities. The major cause of instability is accumulation of the inhibitory intermediate compound nitrite, which could lead to process breakdown. Enhanced on-line nitrite monitoring can be applied in biological source-separated urine nitrification reactors as a sustainable and efficient way to improve the reactor performance, avoiding reactor failures and eventual loss of biological activity. Spectrophotometry appears as a promising candidate for the development and application of on-line nitrite monitoring. Spectroscopic methods together with chemometrics are presented in this work as a powerful tool for estimation of nitrite concentrations. Principal component regression (PCR) is applied for the estimation of nitrite concentrations using an immersible UV sensor and off-line spectra acquisition. The effect of particles and the effect of saturation, respectively, on the UV absorbance spectra are investigated. The analysis allows to conclude that (i) saturation has a substantial effect on nitrite estimation; (ii) particles appear to have less impact on nitrite estimation. In addition, improper mixing together with instabilities in the urine nitrification process appears to significantly reduce the performance of the estimation model.
Resumo:
Review article Martins, P., Marques, M., Coito, L., Pombeiro, A.J.L., Baptista, P.V., Fernandes, A.R. 2014. Organometallic Compounds in Cancer Therapy: Past Lessons and Future Directions. Anti-cancer Agents in Medicinal Chemistry 14. PMID: 25173559
Resumo:
Polymeric particulate-systems are of great relevance due to their possible biomedical applications, among them as carriers for the nano- or microencapsulation of drugs. However, due to their unique specific properties, namely small size range, toxicity issues must be discarded before allowing its use on health-related applications. Several polymers, as poly(methyl methacrylate) (PMMA), have proved to be suitable for the preparation of particulate-systems. However, a major drawback of its use refers to incomplete drug release from particles matrix. Recent strategies to improve PMMA release properties mention the inclusion of other acrylic polymers as Eudragit (EUD) on particles formulation. Though PMMA and EUD are accepted by the FDA as biocompatible, their safety on particle composition lacks sufficient toxicological data. The main objective of this thesis was to evaluate the biological effects of engineered acrylic particulate-systems. Preparation, physicochemical characterization and in vitro toxicity evaluation were assessed on PMMA and PMMA-EUD (50:50) particles. The emulsification-solvent evaporation methodology allowed the preparation of particles with spherical and smooth surfaces within the micrometer range (±500 nm), opposing surface charges and different levels of hydrophobicity. It was observed that particles physicochemical properties (size and charge) were influenced by biological media composition, such as serum concentration, ionic strength or pH. In what concerns to the in vitro toxicological studies, particle cellular uptake was observed on different cell lines (macrophages, osteoblasts and fibroblasts). Cytotoxicity effects were only found after 72 h of cells exposure to the particles, while no oxidative damage was observed neither on osteoblasts nor fibroblasts. Also, no genotoxicity was found in fibroblast using the comet assay to assess DNA damage. This observation should be further confirmed with other validated genotoxicity assays (e.g. Micronucleus Assay). The present study suggests that the evaluated acrylic particles are biocompatible, showing promising biological properties for potential use as carriers in drug-delivery systems.
Resumo:
Ionic Liquids (ILs) belong to a class of compounds with unusual properties: very low vapour pressure; high chemical and thermal stability and the ability to dissolve a wide range of substances. A new field in research is evaluating the possibility to use natural chiral biomolecules for the preparation of chiral ionic liquids (CILs). This important challenge in synthetic chemistry can open new avenues of research in order to avoid some problems related with the intrinsic biodegradability and toxicity associated to conventional ILs. The research work developed aimed for the synthesis of CILs, their characterization and possible applications, based on biological moieties used either as chiral cations or anions, depending on the synthetic manipulation of the derivatives. Overall, a total of 28 organic salts, including CILs were synthesized: 9 based on L-cysteine derivatives, 12 based on L-proline, 3 based on nucleosides and 4 based on nucleotides. All these new CILs were completely characterized and their chemical and physical properties were evaluated. Some CILs based on L-cysteine have been applied for discrimination processes, including resolution of racemates and as a chiral catalyst for asymmetric Aldol condensation. L-proline derived CILs were also studied as chiral catalysts for Michael reaction. In parallel, the interactions of macrocyclic oligosugars called cyclodextrins (CDs) with several ILs were studied. It was possible to improve the solubility of CDs in water and serum. Additionally, fatty acids and steroids showed an increase in water solubility when ILs-CDs systems were used. The development of efficient and selective ILs-CDs systems is indispensable to expand the range of their applications in host-guest interactions, drug delivery systems or catalytic reactions. Novel salts derived from nucleobases were used in order to enhance the fluorescence in aqueous solution. Additionally, preliminary studies regarding ethyl lactate as an alternative solvent for asymmetric organocatalysis were performed.
Resumo:
"Amyotrophic Lateral Sclerosis (ALS) is the most severe and common adult onset disorder that affects motor neurons in the spinal cord, brainstem and cortex, resulting in progressive weakness and death from respiratory failure within two to five years of symptoms onset(...)
Resumo:
Enhanced biological phosphorus removal (EBPR) is the most economic and sustainable option used in wastewater treatment plants (WWTPs) for phosphorus removal. In this process it is important to control the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), since EBPR deterioration or failure can be related with the proliferation of GAOs over PAOs. This thesis is focused on the effect of operational conditions (volatile fatty acid (VFA) composition, dissolved oxygen (DO) concentration and organic carbon loading) on PAO and GAO metabolism. The knowledge about the effect of these operational conditions on EBPR metabolism is very important, since they represent key factors that impact WWTPs performance and sustainability. Substrate competition between the anaerobic uptake of acetate and propionate (the main VFAs present in WWTPs) was shown in this work to be a relevant factor affecting PAO metabolism, and a metabolic model was developed that successfully describes this effect. Interestingly, the aerobic metabolism of PAOs was not affected by different VFA compositions, since the aerobic kinetic parameters for phosphorus uptake, polyhydroxyalkanoates (PHAs) degradation and glycogen production were relatively independent of acetate or propionate concentration. This is very relevant for WWTPs, since it will simplify the calibration procedure for metabolic models, facilitating their use for full-scale systems. The DO concentration and aerobic hydraulic retention time (HRT) affected the PAO-GAO competition, where low DO levels or lower aerobic HRT was more favourable for PAOs than GAOs. Indeed, the oxygen affinity coefficient was significantly higher for GAOs than PAOs, showing that PAOs were far superior at scavenging for the often limited oxygen levels in WWTPs. The operation of WWTPs with low aeration is of high importance for full-scale systems, since it decreases the energetic costs and can potentially improve WWTP sustainability. Extended periods of low organic carbon load, which are the most common conditions that exist in full-scale WWTPs, also had an impact on PAO and GAO activity. GAOs exhibited a substantially higher biomass decay rate as compared to PAOs under these conditions, which revealed a higher survival capacity for PAOs, representing an advantage for PAOs in EBPR processes. This superior survival capacity of PAOs under conditions more closely resembling a full-scale environment was linked with their ability to maintain a residual level of PHA reserves for longer than GAOs, providing them with an effective energy source for aerobic maintenance processes. Overall, this work shows that each of these key operational conditions play an important role in the PAO-GAO competition and should be considered in WWTP models in order to improve EBPR processes.
Resumo:
INTRODUCTION: The biological diversity of circulating Trypanosoma cruzi stocks in the Amazon region most likely plays an important role in the peculiar clinic-epidemiological features of Chagas disease in this area. METHODS: Seven stocks of T. cruzi were recently isolated in the State of Amazonas, Brazil, from humans, wild mammals, and triatomines. They belonged to the TcI and Z3 genotypes and were biologically characterized in Swiss mice. Parasitological and histopathological parameters were determined. RESULTS: Four stocks did not promote patent parasitemia in mice. Three stocks produced low parasitemia, long pre-patent periods, and a patent period of 1 day or oscillating parasitemia. Maximum parasitemia ranged from 1,400 to 2,800 trypomastigotes/0.1mL blood. Mice inoculated with the T. cruzi stocks studied showed low positivity during fresh blood examinations, ranging from 0% to 28.6%. In hemoculture, positivity ranged from 0% to 100%. Heart tissue parasitism was observed in mice inoculated with stocks AM49 and AM61. Stock AM49 triggered a moderate inflammatory process in heart tissue. A mild inflammatory process was observed in heart tissue for stocks AM28, AM38, AM61, and AM69. An inflammatory process was frequently observed in skeletal muscle. Examinations of brain tissue revealed inflammatory foci and gliosis in mice inoculated with stock AM49. CONCLUSIONS: Biological and histopathological characterization allowed us to demonstrate the low infectivity and virulence of T. cruzi stocks isolated from the State of Amazonas.
Resumo:
INTRODUCTION: The study analyzed positivity of polymerase chain reaction (PCR) on detection of DNA from Leishmania in patients' samples. METHODS: Extracted DNA was submitted to L150/L152, 13Y/13Z, and seminested PCR (snPCR). RESULTS: Results were evidenced by bands of approximately 120, 720, and 670 bp for L150/L152, 13Y/13Z, and snPCR, respectively. L150/L152, 13Y/13Z, and snPCR positivity indexes were 76.9, 56.4, and 9.2 (p>0.05), respectively, for suspected and 93.7, 68.7, and 84.4 (p<0.05), respectively, for confirmed. CONCLUSIONS: Preliminary results showed that these assays, mainly L150/L152 and snPCR, can detect Leishmania DNA and carry potential on laboratory diagnosis of leishmaniasis.