992 resultados para neural dynamics
Resumo:
The T-cell receptor (TCR) interaction with antigenic peptides (p) presented by the major histocompatibility complex (MHC) molecule is a key determinant of immune response. In addition, TCR-pMHC interactions offer examples of features more generally pertaining to protein-protein recognition: subtle specificity and cross-reactivity. Despite their importance, molecular details determining the TCR-pMHC binding remain unsolved. However, molecular simulation provides the opportunity to investigate some of these aspects. In this study, we perform extensive equilibrium and steered molecular dynamics simulations to study the unbinding of three TCR-pMHC complexes. As a function of the dissociation reaction coordinate, we are able to obtain converged H-bond counts and energy decompositions at different levels of detail, ranging from the full proteins, to separate residues and water molecules, down to single atoms at the interface. Many observed features do not support a previously proposed two-step model for TCR recognition. Our results also provide keys to interpret experimental point-mutation results. We highlight the role of water both in terms of interface resolvation and of water molecules trapped in the bound complex. Importantly, we illustrate how two TCRs with similar reactivity and structures can have essentially different binding strategies. Proteins 2011; © 2011 Wiley-Liss, Inc.
Resumo:
Rock-paper-scissors (RPS) dynamics, which maintain genetic polymorphisms over time through negative frequency-dependent (FD) selection, can evolve in short-lived species with no generational overlap, where they produce rapid morph frequency cycles. However, most species have overlapping generations and thus, rapid RPS dynamics are thought to require stronger FD selection, the existence of which yet needs to be proved. Here, we experimentally demonstrate that two cumulative selective episodes, FD sexual selection reinforced by FD selection on offspring survival, generate sufficiently strong selection to generate rapid morph frequency cycles in the European common lizard Zootoca vivipara, a multi-annual species with major generational overlap. These findings show that the conditions required for the evolution of RPS games are fulfilled by almost all species exhibiting genetic polymorphisms and suggest that RPS games may be responsible for the maintenance of genetic diversity in a wide range of species.
Resumo:
The study of organisms and their resources is critical to further understanding population dynamics in space and time. Although drosophilids have been widely used as biological models, their relationship with breeding and feeding sites has received little attention. Here, we investigate drosophilids breeding in fruits in the Brazilian Savanna, in two contrasting vegetation types, throughout 16 months. Specifically, larval assemblages were compared between savannas and forests, as well as between rainy and dry seasons. The relationships between resource availability and drosophilid abundance and richness were also tested. The community (4,022 drosophilids of 23 species and 2,496 fruits of 57 plant taxa) varied widely in space and time. Drosophilid assemblages experienced a strong bottleneck during the dry season, decreasing to only 0.5% of the abundance of the rainy season. Additionally, savannas displayed lower richness and higher abundance than the forests, and were dominated by exotic species. Both differences in larval assemblages throughout the year and between savannas and gallery forests are consistent with those previously seen in adults. Although the causes of this dynamic are clearly multifactorial, resource availability (richness and abundance of rotten fruits) was a good predictor of the fly assemblage structure.
Resumo:
The effects of patch size and isolation on metapopulation dynamics have received wide empirical support and theoretical formalization. By contrast, the effects of patch quality seem largely underinvestigated, partly due to technical difficulties in properly assessing quality. Here we combine habitat-quality modeling with four years of demographic monitoring in a metapopulation of greater white-toothed shrews (Crocidura russula) to investigate the role of patch quality on metapopulation processes. Together, local patch quality and connectivity significantly enhanced local population sizes and occupancy rates (R2 = 14% and 19%, respectively). Accounting for the quality of patches connected to the focal one and acting as potential sources improved slightly the model explanatory power for local population sizes, pointing to significant source-sink dynamics. Local habitat quality, in interaction with connectivity, also increased colonization rate (R2 = 28%), suggesting the ability of immigrants to target high-quality patches. Overall, patterns were best explained when assuming a mean dispersal distance of 800 m, a realistic value for the species under study. Our results thus provide evidence that patch quality, in interaction with connectivity, may affect major demographic processes.
Resumo:
ABSTRACT Dynamics of the restoration of physical trails in the grass-cutting ant Atta capiguara. Leaf-cutting ants of the genus Atta build long physical trails by cutting the vegetation growing on the soil surface and removing the small objects they find across their path. Little is known on the dynamics of trail construction in these ants. How much time do they need to build a trail? To answer this question we selected six trails belonging to two different nests of A. capiguara and removed on each trail a block of soil of 20 cm × 15 cm that included a portion of the physical trail. This block was then replaced by a new block of the same size that was removed in the pasture near the trail and that was uniformly covered by the same type of vegetation as that found on the block of soil that was removed. The time required to restore the trail was then evaluated by the length of the grass blades found along the former location of the trail. The results show that ants rapidly restore the portion of the physical trail that was interrupted, which suggests that they could also do the same after their trails have been recolonized by the vegetation.
Resumo:
The northern Humboldt Current system (NHCS) off Peru is one of the most productive world marine regions. It represents less than 0.1% of the world ocean surface but presently sustains about 10% of the world fish catch, with the Peruvian anchovy or anchoveta Engraulis ringens as emblematic fish resource. Compared with other eastern boundary upwelling systems, the higher fish productivity of the NHCS cannot be explained by a corresponding higher primary productivity. On another hand, the NHCS is the region where El Niño, and climate variability in general, is most notable. Also, surface oxygenated waters overlie an intense and extremely shallow Oxygen Minimum Zone (OMZ). In this context, the main objective of this study is to better understand the trophic flows in the NHCS using both stomach content and stable isotope analyses. The study focuses on a variety of organisms from low trophic levels such as zooplankton to top predators (seabirds and fur seals). The approach combines both long-term and specific studies on emblematic species such as anchoveta, and sardine Sardinops sagax and a more inclusive analysis considering the 'global' food web in the recent years (2008 – 2012) using stable isotope analysis. Revisiting anchovy and sardine we show that whereas phytoplankton largely dominated anchoveta and sardine diets in terms of numerical abundance, the carbon content of prey items indicated that zooplankton was by far the most important dietary component. Indeed for anchovy euphausiids contributed 67.5% of dietary carbon, followed by copepods (26.3%). Selecting the largest prey, the euphausiids, provide an energetic advantage for anchoveta in its ecosystem where oxygen depletion imposes strong metabolic constrain to pelagic fish. Sardine feed on smaller zooplankton than do anchoveta, with sardine diet consisting of smaller copepods and fewer euphausiids than anchoveta diet. Hence, trophic competition between sardine and anchovy in the northern Humboldt Current system is minimized by their partitioning of the zooplankton food resource based on prey size, as has been reported in other systems. These results suggest an ecological role for pelagic fish that challenges previous understanding of their position in the foodweb (zooplanktophagous instead of phytophagous), the functioning and the trophic models of the NHCS. Finally to obtain a more comprehensive vision of the relative trophic position of NHCS main components we used stable isotope analyses. For that purpose we analyzed the δ13C and δ15N stable isotope values of thirteen taxonomic categories collected off Peru from 2008 - 2011, i.e., zooplankton, fish, squids and air-breathing top predators. The δ15N isotope signature was strongly impacted by the species, the body length and the latitude. Along the Peruvian coast, the OMZ get more intense and shallow south of ~7.5ºS impacting the baseline nitrogen stable isotopes. Employing a linear mixed-effects modelling approach taking into account the latitudinal and body length effects, we provide a new vision of the relative trophic position of key ecosystem components. Also we confirm stomach content-based results on anchoveta Engraulis ringens and highlight the potential remarkable importance of an often neglected ecosystem component, the squat lobster Pleuroncodes monodon. Indeed, our results support the hypothesis according to which this species forage to some extent on fish eggs and larvae and can thus predate on the first life stages of exploited species. However, the δ13C values of these two species suggest that anchoveta and squat lobster do not exactly share the same habitat. This would potentially reduce some direct competition and/or predation.
Resumo:
This work proposes an original contribution to the understanding of shermen spatial behavior, based on the behavioral ecology and movement ecology paradigms. Through the analysis of Vessel Monitoring System (VMS) data, we characterized the spatial behavior of Peruvian anchovy shermen at di erent scales: (1) the behavioral modes within shing trips (i.e., searching, shing and cruising); (2) the behavioral patterns among shing trips; (3) the behavioral patterns by shing season conditioned by ecosystem scenarios; and (4) the computation of maps of anchovy presence proxy from the spatial patterns of behavioral mode positions. At the rst scale considered, we compared several Markovian (hidden Markov and semi-Markov models) and discriminative models (random forests, support vector machines and arti cial neural networks) for inferring the behavioral modes associated with VMS tracks. The models were trained under a supervised setting and validated using tracks for which behavioral modes were known (from on-board observers records). Hidden semi-Markov models performed better, and were retained for inferring the behavioral modes on the entire VMS dataset. At the second scale considered, each shing trip was characterized by several features, including the time spent within each behavioral mode. Using a clustering analysis, shing trip patterns were classi ed into groups associated to management zones, eet segments and skippers' personalities. At the third scale considered, we analyzed how ecological conditions shaped shermen behavior. By means of co-inertia analyses, we found signi cant associations between shermen, anchovy and environmental spatial dynamics, and shermen behavioral responses were characterized according to contrasted environmental scenarios. At the fourth scale considered, we investigated whether the spatial behavior of shermen re ected to some extent the spatial distribution of anchovy. Finally, this work provides a wider view of shermen behavior: shermen are not only economic agents, but they are also foragers, constrained by ecosystem variability. To conclude, we discuss how these ndings may be of importance for sheries management, collective behavior analyses and end-to-end models.
Resumo:
Multiple lines of evidence show that matrix metalloproteinases (MMPs) are involved in the peripheral neural system degenerative and regenerative processes. MMP-9 was suggested in particular to play a role in the peripheral nerve after injury or during Wallerian degeneration. Interestingly, our previous analysis of Lpin1 mutant mice (which present morphological signs of active demyelination and acute inflammatory cell migration, similar to processes present in the PNS undergoing Wallerian degeneration) revealed an accumulation of MMP-9 in the endoneurium of affected animals. We therefore generated a mouse line lacking both the Lpin1 and the MMP-9 genes in order to determine if MMP-9 plays a role in either inhibition or potentiation of the demyelinating phenotype present in Lpin1 knockout mice. The inactivation of MMP-9 alone did not lead to defects in PNS structure or function. Interestingly we observed that the double mutant animals showed reduced nerve conduction velocity, lower myelin protein mRNA expressions, and had more histological abnormalities as compared to the Lpin1 single mutants. In addition, based on immunohistochemical analysis and macrophage markers mRNA expression, we found a lower macrophage content in the sciatic nerve of the double mutant animals. Together our data indicate that MMP-9 plays a role in macrophage recruitment during postinjury PNS regeneration processes and suggest that slower macrophage infiltration delays regenerative processes in PNS.
Resumo:
We perform direct numerical simulations of drainage by solving Navier- Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and to model the transition from stable flow to viscous fingering, we focus on the definition of macroscopic capillary pressure. When the fluids are at rest, the difference between inlet and outlet pressures and the difference between the intrinsic phase average pressure coincide with the capillary pressure. However, when the fluids are in motion these quantities are dominated by viscous forces. In this case, only a definition based on the variation of the interfacial energy provides an accurate measure of the macroscopic capillary pressure and allows separating the viscous from the capillary pressure components.
Resumo:
A new strategy for incremental building of multilayer feedforward neural networks is proposed in the context of approximation of functions from R-p to R-q using noisy data. A stopping criterion based on the properties of the noise is also proposed. Experimental results for both artificial and real data are performed and two alternatives of the proposed construction strategy are compared.