927 resultados para nerve growth factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Vascular endothelial growth factor-A (VEGF-A) is crucial to retinal vascular growth, both normal and pathological. VEGF-B, recently characterized, is reported to be expressed in retinal tissues, but the importance of VEGF-B to retinal vascular development remained unknown. The aim of this study was to analyse retinal vascular growth in the Vegfb (-/-) knockout mouse. Methods: Retinal vascular growth was measured in Vegfb (-/-) knockout mice raised under normal conditions, and Vegfb (-/-) knockout mice with an oxygen-induced proliferative retinopathy. Wild type Vegfb (+/+) mice served as controls. Vessels were perfused with ink and retinal flatmounts secondarily labelled with FITC-lectin (BS-1, Griffonia simplicifolia ). Area and diameter of retinal growth and retinal vascular growth were recorded over days 0-20, and capillary density and mean diameter recorded from day 17 pups. Results: A variety of techniques confirmed that Vegfb (+/+) mice expressed VEGF-B and that VEGF-B expression was absent in Vegfb (-/-) mice. Vegfb (-/-) mice raised in room air showed no significant differences from Vegfb (+/+) controls. No differences were found in oxygen-induced retinopathy between Vegfb (-/-) and Vegfb (+/+) pups in either the extent of the initial oxygen-induced ablation, or in the regrowth of retinal vessels or vitreal (neovascular) sprouts; vitreal sprouts are important markers of the abnormal proliferative response, and are maximally expressed on day 17 in this model of oxygen-induced retinopathy. Conclusions: These results indicate that a lack of VEGF-B does not significantly affect development of the retinal vasculature under normal conditions, nor does it appear to affect the proliferative retinal responses seen in oxygen-induced retinopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) in rat salivary glands is regulated by testosterone, thyroxin, and growth hormone (GH). Salivary glands of 45-day-old giant and dwarf male and female transgenic mice were examined histologically and by immunohistochemistry (IHC) for EGF. Male giants showed no significant differences from wild-type (WT) parotid and submandibular glands. However, their sublingual glands expressed EGF diffusely and strongly in granular cells within the striated ducts, where they were not found in WT mice. Submandibular gland ducts of female WT were different, having individual granular cells strongly positive for EGF and distributed sporadically along the striated duct walls. Neither female GH-antagonist dwarf mice nor GH-receptor knockout mice had any granular cells expressing EGF in any gland. Obvious presence of granular duct cells in the sublingual glands of giant male mice suggests GH-upregulated granular cell EGF expression. Furthermore, absence of granular duct cells from all glands in female GH-antagonist and GH-receptor knockout transgenic mice suggests that GH is necessary for the differentiation of the granular cell phenotype in female salivary glands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common single nucleotide polymorphism (SNP) in the 5' untranslated region (5'UTR) of the epidermal growth factor (EGF) gene modulates the level of transcription of this gene and hence is associated with serum levels of EGF. This variant may be associated with melanoma risk, but conflicting findings have been reported. An Australian melanoma case-control sample was typed for the EGF+61A>G transversion (rs4444903). The sample comprised 753 melanoma cases from 738 families stratified by family history of melanoma and 2387 controls from 645 unselected twin families. Ancestry of the cases and controls was recorded, and the twins had undergone skin examination to assess total body nevus count, degree of freckling and pigmentation phenotype. SNP genotyping was carried out via primer extension followed by matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectroscopy. The EGIF+61 SNP was not found to be significantly associated with melanoma status or with development of nevi or freckles. Among melanoma cases, however, G homozygotes had thicker tumors (p=0.05), in keeping with two previous studies. The EGF polymorphism does not appear to predispose to melanoma or nevus development, but its significant association with tumor thickness implies that it may be a useful marker of prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endoparasitoid insects introduce maternal factors into the body of their host at oviposition to suppress cellular defences for the protection of the developing parasitoid. We have shown that transient expression of polydnavirus genes from a hymenopteran parasitoid Cotesia rubecula (CrPDV) is responsible for the inactivation of hemocytes from the lepidopteran host Pieris rapae. Since the observed downregulation of CrPDV genes in infected host tissues is not due to cis-regulatory elements at the CrV1 gene locus, we speculated that the termination of CrPDV gene expression may be due to cellular inactivation caused by the CrV1-mediated immune suppression of infected tissues. To test this assumption, we isolated an imaginal disc growth factor (IDGF) that is expressed in fat body and hemocytes, the target of viral infection and expression of CrPDV genes. Time-course experiments showed that the level of P. rapae IDGF is not affected by parasitization and polydnavirus infection. However, the amount of highly expressed genes, such as storage proteins, arylphorin and lipophorin, are significantly reduced following parasitization. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity, with its related problems, is recognized as the fastest growing disease epidemic facing the world, yet we still have limited insight into the regulation of adipose tissue mass in humans. We have previously shown that adipose-derived microvascular endothelial cells (MVECs) secrete a factor(s) that increases proliferation of human preadipocytes. We now demonstrate that coculture of human preadipocytes with MVECs significantly increases preadipocyte differentiation, evidenced by dramatically increased triacylglycerol accumulation and glycerol-3-phosphate dehydrogenase activity compared with controls. Subsequent analysis identified fibroblast growth factor (FGF)-1 as an adipogenic factor produced by MVECs. Expression of FGF-1 was demonstrated in MVECs but not in preadipocytes, while preadipocytes were shown to express FGF receptors 1-4. The proliferative effect of MVECs on human preadipocytes was blocked using a neutralizing antibody specific for FGF-1. Pharmacological inhibition of FGF-1 signaling at multiple steps inhibits preadipocyte replication and differentiation, supporting the key adipogenic role of FGF-1. We also show that 3T3-L1 cells, a highly efficient murine model of adipogenesis, express FGF-1 and, unlike human preadipocytes, display no increased differentiation potential in response to exogenous FGF-1. Conversely, FGF-1-treated human preadipocytes proliferate rapidly and differentiate with high efficiency in a manner characteristic of 3T3-L1 cells. We therefore suggest that FGF-1 is a key human adipogenic factor, and these data expand our understanding of human fat tissue growth and have significant potential for development of novel therapeutic strategies in the prevention and management of human obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Long-term, low-dose macrolide therapy is effective in the treatment of chronic rhinosinusitis. It is believed that macrolide antibiotics produce this benefit through an anti-inflammatory effect. In this study, the effect of clarithromycin treatment on the expression of transforming growth factor (TGF)-beta and the key pro-inflammatory nuclear transcription factor, NF-kappaB, was examined in vitro and in vivo. Study Design and Methods: In vitro: nasal mucosa was obtained from 10 patients with chronic sinusitis and was cultured for 24 hours in the presence of clarithromycin or control. Cellular expression of TGF-beta and NF-kappaB was determined by immunohistochemistry. In vivo: 10 patients with chronic rhinosinusitis were treated for 3 months with clarithromycin. Nasal mucosal biopsies were taken pre- and posttreatment. Cellular expression of TGF-beta and NF-kappaB was again determined by immunohistochemistry. Results: Clarithromycin, when applied to nasal biopsies in vitro, reduced cellular expression of TGF-beta and NF-kappaB. Nasal biopsies taken before and after clarithromycin treatment showed no differences in cellular expression of NF-kappaB or TGF-beta. Conclusion: Clarithromycin can reduce cellular expression of TGF-beta and NF-kappaB when applied in vitro, but its action during clinical therapy is less clear. Clarithromycin is capable of inhibiting pro-inflammatory cytokines in vitro, and reductions of TGF-beta and NF-kappaB may represent additional mechanisms by which macrolides reduce inflammation in chronic airway disease. Discrepancies between the actions of clarithromycin on nasal biopsies in vitro and after clinical therapy warrant further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The poor response to immunotherapy in patients with multiple myeloma (MM) indicates that a better understanding of any defects in the immune response in these patients is required before effective therapeutic strategies can be developed. Recently we reported that high potency (CMRF44(+)) dendritic cells (DC) in the peripheral blood of patients with MM failed to significantly up-regulate the expression of the B7 co-stimulatory molecules, CD80 and CD86, in response to an appropriate signal from soluble trimeric human CD40 ligand. This defect was caused by transforming growth factor beta(1) (TGFbeta(1)) and interleukin (IL)-10, produced by malignant plasma cells, and the defect was neutralized in vitro with anti-TGFbeta(1). As this defect could impact on immunotherapeutic strategies and may be a major cause of the failure of recent trials, it was important to identify a more clinically useful agent that could correct the defect in vivo. In this study of 59 MM patients, the relative and absolute numbers of blood DC were only significantly decreased in patients with stage III disease and CD80 up-regulation was reduced in both stage I and stage III. It was demonstrated that both IL-12 and interferon-gamma neutralized the failure to stimulate CD80 up-regulation by huCD40LT in vitro. IL-12 did not cause a change in the distribution of DC subsets that were predominantly myeloid (CD11c+ and CDw123-) suggesting that there would be a predominantly T-helper cell type response. The addition of IL-12 or interferon-gamma to future immunotherapy trials involving these patients should be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following injury, it is inherently difficult to completely restore the biomechanical properties of ligaments. Relatively little is known about the cellular mechanisms controlling ligament healing. Numerous studies have implicated fibroblast growth factors (FGFs) as key molecules during the initiation of the cellular proliferation, differentiation, migration and matrix deposition that characterise wound healing. While current surgical emphasis concentrates on growth factor intervention, the role of their cognate receptors (FGFRs) has largely been overlooked. Following transection of the medial collateral ligament (MCL) in rabbits, we examined FGFR expression over a 14-day healing period. Using semiquantitative RT-PCR, we observed a significant upregulation in FGFR2 expression after 3 days. By 7 days post injury, FGFR2 expression fell to basal levels in line with those of FGFR1 and 3, both of which remained unaffected by surgical transection. These results demonstrate a role for FGFR2 in fibroblast and endothelial cell proliferation in damaged ligament, and suggest a window for FGF therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin-like growth factor-I (IGF-I) has multiple effects within the developing nervous system but its role in neurogenesis in the adult nervous system is less clear. The adult olfactory mucosa is a site of continuing neurogenesis that expresses IGF-I, its receptor and its binding proteins. The aim of the present study was to investigate the roles of IGF-I in regulating proliferation and differentiation in the olfactory mucosa. The action of IGF-I was assayed in serum-free culture combined with bromodeoxyuridine-labelling of proliferating cells and immunochemistry for specific cell types. IGF-I and its receptor were expressed by globose basal cells (the neuronal precursor) and by olfactory neurons. IGF-I reduced the numbers of proliferating neuronal precursors, induced their differentiation into neurons and promoted morphological differentiation of neurons. The evidence suggests that IGF-I is an autocrine and/or paracrine signal that induces neuronal precursors to differentiate into olfactory sensory neurons. These effects appear to be similar to the cellular effects of IGF-I in the developing nervous system.